Question 1

If [tex]x = 5 + 2 \sqrt{6}[/tex], then find the value of [tex]\left(\sqrt{x} - \frac{1}{\sqrt{x}}\right)[/tex].

A. [tex]2 \sqrt{3}[/tex]
B. [tex]2 \sqrt{2}[/tex]
C. [tex]4 \sqrt{2}[/tex]
D. [tex]5 \sqrt{2}[/tex]
E. None of these



Answer :

Certainly! Let's go through the steps to find the value of [tex]\(\left(\sqrt{x} - \frac{1}{\sqrt{x}}\right)\)[/tex] when [tex]\(x = 5 + 2\sqrt{6}\)[/tex].

1. Calculate [tex]\(x\)[/tex]:

Given [tex]\(x = 5 + 2 \sqrt{6}\)[/tex].

2. Find [tex]\(\sqrt{x}\)[/tex]:

Calculate [tex]\(\sqrt{5 + 2 \sqrt{6}}\)[/tex].

After calculating, we find:
[tex]\[ \sqrt{5 + 2 \sqrt{6}} = 3.146264369941972 \][/tex]

3. Find [tex]\(\frac{1}{\sqrt{x}}\)[/tex]:

Use the value found for [tex]\(\sqrt{x}\)[/tex] to calculate [tex]\(\frac{1}{\sqrt{x}}\)[/tex]:
[tex]\[ \frac{1}{\sqrt{x}} = \frac{1}{3.146264369941972} = 0.31783724519578227 \][/tex]

4. Calculate [tex]\(\left(\sqrt{x} - \frac{1}{\sqrt{x}}\right)\)[/tex]:

Subtract [tex]\(\frac{1}{\sqrt{x}}\)[/tex] from [tex]\(\sqrt{x}\)[/tex]:
[tex]\[ \sqrt{x} - \frac{1}{\sqrt{x}} = 3.146264369941972 - 0.31783724519578227 = 2.82842712474619 \][/tex]

Therefore, the value of [tex]\(\left(\sqrt{x} - \frac{1}{\sqrt{x}}\right)\)[/tex] is:

[tex]\[ \boxed{2.82842712474619} \][/tex]

Since this numerical result matches [tex]\(\mathbf{2 \sqrt{2}}\)[/tex], our answer corresponds to option B:
[tex]\[ \boxed{2 \sqrt{2}} \][/tex]