Select the correct answer.

What is [tex]\sqrt{200}[/tex] in simplest form?

A. [tex]2 \sqrt{10}[/tex]
B. [tex]10 \sqrt{2}[/tex]
C. [tex]100 \sqrt{2}[/tex]
D. [tex]20 \sqrt{10}[/tex]



Answer :

To find the simplest form of [tex]\(\sqrt{200}\)[/tex], we start by simplifying the radical expression.

First, we express 200 as a product of its prime factors:
[tex]\[ 200 = 2 \times 100. \][/tex]

Next, break down 100 into its prime factors:
[tex]\[ 100 = 10^2. \][/tex]

Therefore:
[tex]\[ 200 = 2 \times 10^2. \][/tex]

We can now use the property of square roots [tex]\(\sqrt{a \times b} = \sqrt{a} \times \sqrt{b}\)[/tex] to simplify [tex]\(\sqrt{200}\)[/tex]:
[tex]\[ \sqrt{200} = \sqrt{2 \times 10^2} = \sqrt{2} \times \sqrt{10^2}. \][/tex]

Since the square root of [tex]\(10^2\)[/tex] is simply 10:
[tex]\[ \sqrt{200} = \sqrt{2} \times 10 = 10\sqrt{2}. \][/tex]

Thus, [tex]\(\sqrt{200}\)[/tex] in its simplest form is:
[tex]\[ 10 \sqrt{2}. \][/tex]

Therefore, the correct answer is:
[tex]\[ \boxed{B.} \][/tex]