Answer :
Certainly! Let's simplify the given mathematical expression step-by-step.
### Given Expression:
[tex]\[ -\frac{5x}{2} - x \][/tex]
### Step 1: Combine like terms
To simplify this expression, we need to combine the terms that contain the variable [tex]\( x \)[/tex]. Both terms in this expression contain [tex]\( x \)[/tex].
First, note that [tex]\( x \)[/tex] can be rewritten as [tex]\( \frac{2x}{2} \)[/tex] to have a common denominator:
[tex]\[ x = \frac{2x}{2} \][/tex]
### Step 2: Substitute and combine
Now, substitute [tex]\( x \)[/tex] with [tex]\( \frac{2x}{2} \)[/tex] in the expression:
[tex]\[ -\frac{5x}{2} - \frac{2x}{2} \][/tex]
Since the denominators are the same, we can combine the numerators directly:
[tex]\[ -\frac{5x}{2} - \frac{2x}{2} = -\frac{5x + 2x}{2} \][/tex]
Combine the terms in the numerator:
[tex]\[ -\frac{7x}{2} \][/tex]
### Final Simplified Expression:
[tex]\[ -\frac{7x}{2} \][/tex]
This is the simplified form of the given expression. Thus, the answer is:
[tex]\[ -\frac{7x}{2} \][/tex]
### Given Expression:
[tex]\[ -\frac{5x}{2} - x \][/tex]
### Step 1: Combine like terms
To simplify this expression, we need to combine the terms that contain the variable [tex]\( x \)[/tex]. Both terms in this expression contain [tex]\( x \)[/tex].
First, note that [tex]\( x \)[/tex] can be rewritten as [tex]\( \frac{2x}{2} \)[/tex] to have a common denominator:
[tex]\[ x = \frac{2x}{2} \][/tex]
### Step 2: Substitute and combine
Now, substitute [tex]\( x \)[/tex] with [tex]\( \frac{2x}{2} \)[/tex] in the expression:
[tex]\[ -\frac{5x}{2} - \frac{2x}{2} \][/tex]
Since the denominators are the same, we can combine the numerators directly:
[tex]\[ -\frac{5x}{2} - \frac{2x}{2} = -\frac{5x + 2x}{2} \][/tex]
Combine the terms in the numerator:
[tex]\[ -\frac{7x}{2} \][/tex]
### Final Simplified Expression:
[tex]\[ -\frac{7x}{2} \][/tex]
This is the simplified form of the given expression. Thus, the answer is:
[tex]\[ -\frac{7x}{2} \][/tex]