Answer :
Sure, let's solve this system of linear equations step by step.
We are given the system of equations:
[tex]\[ \begin{cases} -7x - 2y = 14 \\ 6x + 6y = 18 \end{cases} \][/tex]
### Step 1: Simplify the Equations if Possible
First, we’ll simplify the second equation:
[tex]\[ 6x + 6y = 18 \][/tex]
Divide every term by 6:
[tex]\[ x + y = 3 \quad \text{(Equation 2)} \][/tex]
### Step 2: Use Substitution or Elimination
We can use the substitution method here. Express [tex]\(y\)[/tex] from Equation 2:
[tex]\[ y = 3 - x \quad \text{(Equation 3)} \][/tex]
### Step 3: Substitute into the First Equation
Now, substitute Equation 3 into the first equation:
[tex]\[ -7x - 2(3 - x) = 14 \][/tex]
Simplify this equation:
[tex]\[ -7x - 6 + 2x = 14 \][/tex]
Combine like terms:
[tex]\[ -5x - 6 = 14 \][/tex]
Add 6 to both sides:
[tex]\[ -5x = 20 \][/tex]
Divide both sides by -5:
[tex]\[ x = -4 \][/tex]
### Step 4: Substitute [tex]\(x\)[/tex] Back into Equation 3
Now, substitute [tex]\(x = -4\)[/tex] back into Equation 3:
[tex]\[ y = 3 - (-4) \][/tex]
Simplify:
[tex]\[ y = 3 + 4 \\ y = 7 \][/tex]
### Step 5: Write the Solution
Therefore, the solution to the system of equations is:
[tex]\[ x = -4 \][/tex]
[tex]\[ y = 7 \][/tex]
We can now fill in the blanks:
[tex]\[ x = -4 \][/tex]
[tex]\[ y = 7 \][/tex]
This means the solution to the system of equations is [tex]\((-4, 7)\)[/tex].
We are given the system of equations:
[tex]\[ \begin{cases} -7x - 2y = 14 \\ 6x + 6y = 18 \end{cases} \][/tex]
### Step 1: Simplify the Equations if Possible
First, we’ll simplify the second equation:
[tex]\[ 6x + 6y = 18 \][/tex]
Divide every term by 6:
[tex]\[ x + y = 3 \quad \text{(Equation 2)} \][/tex]
### Step 2: Use Substitution or Elimination
We can use the substitution method here. Express [tex]\(y\)[/tex] from Equation 2:
[tex]\[ y = 3 - x \quad \text{(Equation 3)} \][/tex]
### Step 3: Substitute into the First Equation
Now, substitute Equation 3 into the first equation:
[tex]\[ -7x - 2(3 - x) = 14 \][/tex]
Simplify this equation:
[tex]\[ -7x - 6 + 2x = 14 \][/tex]
Combine like terms:
[tex]\[ -5x - 6 = 14 \][/tex]
Add 6 to both sides:
[tex]\[ -5x = 20 \][/tex]
Divide both sides by -5:
[tex]\[ x = -4 \][/tex]
### Step 4: Substitute [tex]\(x\)[/tex] Back into Equation 3
Now, substitute [tex]\(x = -4\)[/tex] back into Equation 3:
[tex]\[ y = 3 - (-4) \][/tex]
Simplify:
[tex]\[ y = 3 + 4 \\ y = 7 \][/tex]
### Step 5: Write the Solution
Therefore, the solution to the system of equations is:
[tex]\[ x = -4 \][/tex]
[tex]\[ y = 7 \][/tex]
We can now fill in the blanks:
[tex]\[ x = -4 \][/tex]
[tex]\[ y = 7 \][/tex]
This means the solution to the system of equations is [tex]\((-4, 7)\)[/tex].