Complete the table of inputs and outputs for the given function.

[tex]\[ g(x) = 3 - 8x \][/tex]

\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$g(x)$[/tex] \\
\hline
& 0 \\
\hline
0 & \\
\hline
& -5 \\
\hline
3 & \\
\hline
\end{tabular}



Answer :

Certainly! Let's complete the table for the function [tex]\( g(x) = 3 - 8x \)[/tex].

1. First, we need to find the value of [tex]\( x \)[/tex] when [tex]\( g(x) = 0 \)[/tex]:
[tex]\[ 0 = 3 - 8x \][/tex]
From previous calculations, when [tex]\( g(x) = 0 \)[/tex], [tex]\( x = 0.375 \)[/tex].

2. Next, we need to find the value of [tex]\( g(x) \)[/tex] when [tex]\( x = 0 \)[/tex]:
[tex]\[ g(0) = 3 - 8 \cdot 0 = 3 \][/tex]
From previous calculations, [tex]\( g(0) = 3 \)[/tex].

3. Next, we need to find the value of [tex]\( x \)[/tex] when [tex]\( g(x) = -5 \)[/tex]:
[tex]\[ -5 = 3 - 8x \][/tex]
From previous calculations, when [tex]\( g(x) = -5 \)[/tex], [tex]\( x = 1.0 \)[/tex].

4. Finally, we need to find the value of [tex]\( g(x) \)[/tex] when [tex]\( x = 3 \)[/tex]:
[tex]\[ g(3) = 3 - 8 \cdot 3 = -21 \][/tex]
From previous calculations, [tex]\( g(3) = -21 \)[/tex].

Now, we can complete the table:

[tex]\[ \begin{tabular}{|c|c|} \hline $x$ & $g(x)$ \\ \hline 0.375 & 0 \\ \hline 0 & 3 \\ \hline 1.0 & -5 \\ \hline 3 & -21 \\ \hline \end{tabular} \][/tex]