Answered

Given that

[tex]\[
\frac{x^2}{20 - 3x} = \frac{1}{2}
\][/tex]

find the possible values of [tex]\( x \)[/tex].



Answer :

To solve the equation

[tex]\[ \frac{x^2}{20 - 3x} = \frac{1}{2}, \][/tex]

we can proceed as follows:

1. Cross-multiply the given equation to eliminate the fraction:

[tex]\[ 2 x^2 = 20 - 3x. \][/tex]

2. Rearrange the equation to form a standard quadratic equation:

[tex]\[ 2 x^2 + 3x - 20 = 0. \][/tex]

3. This is a quadratic equation in the form [tex]\(ax^2 + bx + c = 0\)[/tex], with [tex]\(a = 2\)[/tex], [tex]\(b = 3\)[/tex], and [tex]\(c = -20\)[/tex].

4. To solve the quadratic equation, we can use the quadratic formula:

[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}. \][/tex]

5. Substitute the values of [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] into the quadratic formula:

[tex]\[ x = \frac{-3 \pm \sqrt{3^2 - 4 \cdot 2 \cdot (-20)}}{2 \cdot 2}. \][/tex]

6. Simplify under the square root:

[tex]\[ x = \frac{-3 \pm \sqrt{9 + 160}}{4}. \][/tex]

[tex]\[ x = \frac{-3 \pm \sqrt{169}}{4}. \][/tex]

[tex]\[ x = \frac{-3 \pm 13}{4}. \][/tex]

7. This gives us two solutions when performing the calculation with each sign:

- For the positive square root:

[tex]\[ x = \frac{-3 + 13}{4} = \frac{10}{4} = 2.5. \][/tex]

- For the negative square root:

[tex]\[ x = \frac{-3 - 13}{4} = \frac{-16}{4} = -4. \][/tex]

8. Therefore, the possible values of [tex]\(x\)[/tex] are:

[tex]\[ x = 2.5 \quad \text{and} \quad x = -4. \][/tex]

Thus, the solutions to the equation [tex]\(\frac{x^2}{20 - 3x} = \frac{1}{2}\)[/tex] are [tex]\(x = 2.5\)[/tex] and [tex]\(x = -4\)[/tex].