Answer :

To simplify the expression [tex]\(\left(1 + \tan^2 \alpha\right)(1 - \sin \alpha)(1 + \sin \alpha)\)[/tex], let's proceed step-by-step.

1. Recognize the identity for tangent squared:
[tex]\[ 1 + \tan^2 \alpha \][/tex]
This is a well-known trigonometric identity, which can be expressed as:
[tex]\[ 1 + \tan^2 \alpha = \sec^2 \alpha \][/tex]

2. Factorize the sine terms:
[tex]\[ (1 - \sin \alpha)(1 + \sin \alpha) \][/tex]
This is a difference of squares. Recall the identity:
[tex]\[ (a - b)(a + b) = a^2 - b^2 \][/tex]
So,
[tex]\[ (1 - \sin \alpha)(1 + \sin \alpha) = 1^2 - (\sin \alpha)^2 = 1 - \sin^2 \alpha \][/tex]

3. Use the Pythagorean identity:
[tex]\[ 1 - \sin^2 \alpha \][/tex]
This can be simplified using the Pythagorean identity:
[tex]\[ \sin^2 \alpha + \cos^2 \alpha = 1 \][/tex]
Thus,
[tex]\[ 1 - \sin^2 \alpha = \cos^2 \alpha \][/tex]

4. Combine the results:
Substitute the simplified forms into the original expression:
[tex]\[ \left(1 + \tan^2 \alpha\right)(1 - \sin \alpha)(1 + \sin \alpha) = \sec^2 \alpha \cdot \cos^2 \alpha \][/tex]

5. Simplify the product:
Recall the definition of secant:
[tex]\[ \sec \alpha = \frac{1}{\cos \alpha} \][/tex]
Therefore:
[tex]\[ \sec^2 \alpha = \frac{1}{\cos^2 \alpha} \][/tex]
Substitute back:
[tex]\[ \sec^2 \alpha \cdot \cos^2 \alpha = \frac{1}{\cos^2 \alpha} \cdot \cos^2 \alpha \][/tex]

6. Final simplification:
Since [tex]\(\frac{\cos^2 \alpha}{\cos^2 \alpha} = 1\)[/tex], the simplified expression is:
[tex]\[ 1 \][/tex]

Thus, the expression [tex]\(\left(1 + \tan^2 \alpha\right)(1 - \sin \alpha)(1 + \sin \alpha)\)[/tex] simplifies to:
[tex]\[ 1 \][/tex]