8. Determine whether the function [tex]h(x)=x^3-2x[/tex] is even, odd, or neither.

Solution:
Recall that a function [tex]f[/tex] is said to be even if [tex]f(-x)=f(x)[/tex] and odd if [tex]f(-x)=-f(x)[/tex].

Now, let us evaluate [tex]h(-x)[/tex]. We have that [tex]h(-x)=\square[/tex]

Hence, we see that [tex]h(-x)=\square[/tex] and we conclude that [tex]h(x)[/tex] is [tex]\square[/tex]

9. Find the limit of the function [tex]f(x)=\frac{e^{3x}-1}{x}[/tex] as [tex]x \rightarrow 0[/tex].

Solution:
Observe that [tex]\lim _{x \rightarrow 0} f(x)=\frac{e^{3x}-1}{0}=\frac{C}{0}[/tex].

Thus we apply L'Hôpital's rule (i.e., differentiate the numerator and denominator separately and take the limit of the new function), we get

[tex]
\lim _{x \rightarrow 0} \frac{e^{3x}-1}{x}=\lim _{x \rightarrow 0} \frac{\left(e^{3x}-1\right)^{\prime}}{(x)^{\prime}}=\lim _{x \rightarrow 0} \frac{3e^{3x}}{1}=
\ \square
[/tex]



Answer :

### Problem 8:
Determine whether the function [tex]\( h(x)=x^3-2x \)[/tex] is even, odd, or neither.

Solution:
Recall that a function [tex]\( f \)[/tex] is said to be even if [tex]\( f(-x) = f(x) \)[/tex] and odd if [tex]\( f(-x) = -f(x) \)[/tex].

Let's first evaluate [tex]\( h(-x) \)[/tex].

[tex]\[ h(-x) = (-x)^3 - 2(-x) \][/tex]
[tex]\[ h(-x) = -x^3 + 2x \][/tex]

Now, compare [tex]\( h(-x) \)[/tex] with [tex]\( h(x) \)[/tex]:

[tex]\[ h(x) = x^3 - 2x \][/tex]

Check for evenness:
[tex]\[ h(-x) \neq h(x) \][/tex]
As [tex]\( -x^3 + 2x \neq x^3 - 2x \)[/tex], the function is not even.

Check for oddness:
[tex]\[ -h(x) = - (x^3 - 2x) \][/tex]
[tex]\[ -h(x) = -x^3 + 2x \][/tex]
[tex]\[ h(-x) = -h(x) \][/tex]

Since [tex]\( h(-x) = -h(x) \)[/tex], the function is odd.

Hence, we see that [tex]\( h(-x) = -h(x) \)[/tex] and we conclude that [tex]\( h(x) \)[/tex] is odd.

### Problem 9:
Find the limit of the function [tex]\( f(x)=\frac{e^{3x}-1}{x} \)[/tex] as [tex]\( x \rightarrow 0 \)[/tex].

Solution:
Observe that as [tex]\( x \rightarrow 0 \)[/tex],

[tex]\[ \frac{e^{3x} - 1}{x} \][/tex]
becomes an indeterminate form [tex]\(\frac{0}{0}\)[/tex].

Therefore, we apply L'Hôpital's rule, which means differentiating the numerator and the denominator separately and then taking the limit of the new function.

First, differentiate the numerator and the denominator:
[tex]\[ \text{Numerator: } \frac{d}{dx} (e^{3x} - 1) = 3e^{3x} \][/tex]
[tex]\[ \text{Denominator: } \frac{d}{dx} x = 1 \][/tex]

Now, apply L'Hôpital's rule:
[tex]\[ \lim_{x \rightarrow 0} \frac{e^{3x} - 1}{x} = \lim_{x \rightarrow 0} \frac{3e^{3x}}{1} \][/tex]

Evaluate the limit:
[tex]\[ \lim_{x \rightarrow 0} 3e^{3x} = 3e^0 = 3 \][/tex]

Thus, the limit is:
[tex]\[ \boxed{3} \][/tex]

So, the limit of the function [tex]\( f(x) = \frac{e^{3x} - 1}{x} \)[/tex] as [tex]\( x \rightarrow 0 \)[/tex] is 3.