Answer :
To solve this problem, we need to work out the missing value in the estimation [tex]\( 9.23 \times 5.87 \approx 9 \times \square \)[/tex].
1. Calculate the Exact Value:
- First, we determine the exact result of multiplying [tex]\( 9.23 \)[/tex] by [tex]\( 5.87 \)[/tex].
- Given data: [tex]\( 9.23 \times 5.87 \)[/tex] results in [tex]\( 54.1801 \)[/tex].
2. Set Up the Approximation:
- We approximate [tex]\( 9.23 \)[/tex] by [tex]\( 9 \)[/tex], which allows us to set up the following equation:
[tex]\[ 9 \times \text{(Missing Value)} \approx 54.1801 \][/tex]
3. Solve for the Missing Value:
- To find the missing value, we need to divide the exact result ([tex]\( 54.1801 \)[/tex]) by [tex]\( 9 \)[/tex]:
[tex]\[ \text{Missing Value} = \frac{54.1801}{9} \][/tex]
4. Perform the Division:
- Doing this division, we get:
[tex]\[ \text{Missing Value} \approx 6.020011111111112 \][/tex]
So, the missing value in this estimation is approximately [tex]\( 6.020011111111112 \)[/tex].
Therefore, the complete estimation looks like this:
[tex]\[ 9.23 \times 5.87 \approx 9 \times 6.020011111111112 \][/tex]
1. Calculate the Exact Value:
- First, we determine the exact result of multiplying [tex]\( 9.23 \)[/tex] by [tex]\( 5.87 \)[/tex].
- Given data: [tex]\( 9.23 \times 5.87 \)[/tex] results in [tex]\( 54.1801 \)[/tex].
2. Set Up the Approximation:
- We approximate [tex]\( 9.23 \)[/tex] by [tex]\( 9 \)[/tex], which allows us to set up the following equation:
[tex]\[ 9 \times \text{(Missing Value)} \approx 54.1801 \][/tex]
3. Solve for the Missing Value:
- To find the missing value, we need to divide the exact result ([tex]\( 54.1801 \)[/tex]) by [tex]\( 9 \)[/tex]:
[tex]\[ \text{Missing Value} = \frac{54.1801}{9} \][/tex]
4. Perform the Division:
- Doing this division, we get:
[tex]\[ \text{Missing Value} \approx 6.020011111111112 \][/tex]
So, the missing value in this estimation is approximately [tex]\( 6.020011111111112 \)[/tex].
Therefore, the complete estimation looks like this:
[tex]\[ 9.23 \times 5.87 \approx 9 \times 6.020011111111112 \][/tex]