Find the sum using the commutative and associative properties of addition.

(i) [tex]\sqrt{\frac{5}{6}} + \frac{-6}{5} + \frac{4}{10} + \frac{-7}{6}[/tex]

(ii) [tex]\frac{3}{8} + \frac{5}{12} + \frac{5}{7} + \frac{7}{12}[/tex]



Answer :

Let’s solve these problems step-by-step.

For part (i):

Given expression:
[tex]\[ \sqrt{\frac{5}{6}} + \frac{-6}{5} + \frac{4}{10} + \frac{-7}{6} \][/tex]

First, simplify each term:

[tex]\[ \sqrt{\frac{5}{6}} \][/tex]
[tex]\(\sqrt{\frac{5}{6}}\)[/tex] is already simplified.

[tex]\[ \frac{-6}{5} \][/tex]
[tex]\(\frac{-6}{5}\)[/tex] is already in its simplest form.

[tex]\[ \frac{4}{10} \][/tex]
This simplifies to:
[tex]\[ \frac{4}{10} = \frac{2}{5} \][/tex]

[tex]\[ \frac{-7}{6} \][/tex]
[tex]\(\frac{-7}{6}\)[/tex] is already simplified.

Now, we sum these terms:
[tex]\[ \sqrt{\frac{5}{6}} + \frac{-6}{5} + \frac{2}{5} + \frac{-7}{6} \][/tex]

Combining the like terms involves considering common denominators and simplifying:

The terms combine to yield [tex]\( -1.0537957374913898 \)[/tex].

For part (ii):

Given expression:
[tex]\[ \frac{3}{8} + \frac{5}{12} + \frac{5}{7} + \frac{7}{12} \][/tex]

First, simplify each term:

[tex]\[ \frac{3}{8} \][/tex]
[tex]\(\frac{3}{8}\)[/tex] is already simplified.

[tex]\[ \frac{5}{12} \][/tex]
[tex]\(\frac{5}{12}\)[/tex] is already simplified.

[tex]\[ \frac{5}{7} \][/tex]
[tex]\(\frac{5}{7}\)[/tex] is already simplified.

[tex]\[ \frac{7}{12} \][/tex]
[tex]\(\frac{7}{12}\)[/tex] is already simplified.

Now, we sum these terms:
[tex]\[ \frac{3}{8}, \frac{5}{12}, \frac{5}{7}, \frac{7}{12} \][/tex]

Combining the like terms, with appropriate common denominators and simplifications, yields [tex]\( 2.0892857142857144 \)[/tex].

So, the final sums are:

(i) [tex]\(-1.0537957374913898\)[/tex]

(ii) [tex]\(2.0892857142857144\)[/tex]