Answer :

To solve the equation [tex]\((-2)^{-3} \times (-2)^6 = (-2)^{2x-1}\)[/tex], let's follow these step-by-step instructions:

1. Simplify the left side of the equation using the properties of exponents:

We know that when you multiply two exponents with the same base, you can add the exponents together:
[tex]\[ (-2)^{-3} \times (-2)^6 = (-2)^{-3 + 6} \][/tex]
Simplifying [tex]\(-3 + 6\)[/tex]:
[tex]\[ -3 + 6 = 3 \][/tex]
Therefore:
[tex]\[ (-2)^{-3} \times (-2)^6 = (-2)^3 \][/tex]

2. Evaluate the simplified left side:

Calculate [tex]\((-2)^3\)[/tex]:
[tex]\[ (-2)^3 = -2 \times -2 \times -2 \][/tex]
Performing the multiplications step-by-step:
[tex]\[ -2 \times -2 = 4 \quad \text{and then} \quad 4 \times -2 = -8 \][/tex]
Therefore:
[tex]\[ (-2)^{-3} \times (-2)^6 = -8 \][/tex]

3. Equate the simplified left side to the right side of the original equation:

Now, we have:
[tex]\[ (-2)^3 = (-2)^{2x-1} \][/tex]

4. Since the bases are the same, set the exponents equal to each other:

[tex]\[ 3 = 2x - 1 \][/tex]

5. Solve for [tex]\(x\)[/tex]:

Rearrange the equation to isolate [tex]\(x\)[/tex]:
[tex]\[ 3 + 1 = 2x \][/tex]
Simplify:
[tex]\[ 4 = 2x \][/tex]
Divide both sides by 2:
[tex]\[ x = 2 \][/tex]

6. Check the solution:

To confirm our solution, substitute [tex]\(x = 2\)[/tex] back into the right side of the equation:
[tex]\[ (-2)^{2x - 1} = (-2)^{2 \times 2 - 1} = (-2)^3 \][/tex]
Since [tex]\((-2)^3 = -8\)[/tex], we verify that the left side and right side of the equation are consistent.

Therefore, the solution to the equation [tex]\((-2)^{-3} \times (-2)^6 = (-2)^{2x-1}\)[/tex] is:
[tex]\[ x = 2 \][/tex]