Rewrite the expression in the form [tex]k \cdot y^n[/tex]. Write the exponent as an integer, fraction, or an exact decimal (not a mixed number).

[tex]
3 y^{-\frac{4}{3}} \cdot 2 \sqrt[3]{y}=
[/tex]

[tex]\square[/tex]



Answer :

To rewrite the expression [tex]\(3 y^{-\frac{4}{3}} \cdot 2 \sqrt[3]{y}\)[/tex] in the form [tex]\(k \cdot y^n\)[/tex], we start by breaking down and simplifying each component of the expression.

1. Rewrite each component in terms of an exponent:

The expression [tex]\(3 y^{-\frac{4}{3}}\)[/tex] is already in exponential form.

The term [tex]\(2 \sqrt[3]{y}\)[/tex] can be rewritten using exponents as [tex]\(2 y^{\frac{1}{3}}\)[/tex].

2. Combine the coefficients:

Multiply the numerical coefficients together:
[tex]\[ 3 \cdot 2 = 6 \][/tex]

3. Combine the exponents:

Add the exponents for [tex]\(y\)[/tex]:
[tex]\[ y^{-\frac{4}{3}} \cdot y^{\frac{1}{3}} \][/tex]

Recall that when multiplying terms with the same base, the exponents are added:
[tex]\[ -\frac{4}{3} + \frac{1}{3} = -\frac{4}{3} + \frac{1}{3} = -\frac{3}{3} = -1 \][/tex]

4. Simplified expression:

Putting it all together, we get:
[tex]\[ 3 y^{-\frac{4}{3}} \cdot 2 y^{\frac{1}{3}} = 6 y^{-1} \][/tex]

In another form, [tex]\(y^{-1}\)[/tex] is the same as [tex]\(\frac{1}{y}\)[/tex].

So, the expression can be rewritten as:
[tex]\[ 6 y^{-1} \][/tex]
or equivalently,
[tex]\[ \frac{6}{y} \][/tex]