Properties of Exponents: Mastery Test

1. Select the correct answer.

Simplify the following expression:
[tex]5^{-3}[/tex]

A. [tex]\frac{1}{5^3}[/tex]

B. [tex]-\frac{1}{85}[/tex]

C. [tex]-5^3[/tex]

D. [tex]5(-3)[/tex]



Answer :

To simplify the expression [tex]\(5^{-3}\)[/tex], let's break it down step-by-step using the properties of exponents.

### Step 1: Understand the Negative Exponent Rule

One important property of exponents is the negative exponent rule. This rule states that for any nonzero number [tex]\(a\)[/tex] and positive integer [tex]\(n\)[/tex]:
[tex]\[ a^{-n} = \frac{1}{a^n} \][/tex]

### Step 2: Apply the Negative Exponent Rule

In our case, [tex]\(a = 5\)[/tex] and [tex]\(n = 3\)[/tex]. So, applying the negative exponent rule to [tex]\(5^{-3}\)[/tex]:
[tex]\[ 5^{-3} = \frac{1}{5^3} \][/tex]

### Step 3: Compute [tex]\(5^3\)[/tex]

Now, we need to compute the value of [tex]\(5^3\)[/tex]:
[tex]\[ 5^3 = 5 \times 5 \times 5 = 125 \][/tex]

### Step 4: Substitute and Simplify

Substituting the value of [tex]\(5^3\)[/tex] back into the fraction, we get:
[tex]\[ \frac{1}{5^3} = \frac{1}{125} \][/tex]

So, the simplified expression for [tex]\(5^{-3}\)[/tex] is [tex]\(\frac{1}{125}\)[/tex].

### Verification of Numerical Value

Let’s verify by converting [tex]\(\frac{1}{125}\)[/tex] into a decimal:
[tex]\(\frac{1}{125} = 0.008\)[/tex]

Thus, the correct answer is:
[tex]\[ \boxed{\frac{1}{5^3}} \][/tex]

This corresponds to option A.