Select the correct answer.

Which expression is equivalent to the given expression [tex]$(-6ab)^2$[/tex]?

A. [tex]$-36a^2b^2$[/tex]
B. [tex][tex]$36a^2b^2$[/tex][/tex]
C. [tex]$-12a^2b^2$[/tex]
D. [tex]$-12ab^2$[/tex]



Answer :

To find the expression equivalent to [tex]\((-6 a b)^2\)[/tex], let's go through the problem step by step.

1. Understand the expression: The given expression is [tex]\((-6 a b)^2\)[/tex]. This means that we are squaring the expression [tex]\(-6 a b\)[/tex].

2. Square the expression: Squaring an expression means multiplying the expression by itself. Therefore, we have:
[tex]\[ (-6 a b) \times (-6 a b) \][/tex]

3. Multiply the coefficients: First, we square the numerical coefficient [tex]\(-6\)[/tex]:
[tex]\[ (-6) \times (-6) = 36 \][/tex]

4. Multiply the variables: Next, we square each variable in the expression individually:
[tex]\[ (a \times a) = a^2 \][/tex]
[tex]\[ (b \times b) = b^2 \][/tex]

5. Combine the results: Putting it all together, we multiply the squared coefficient by the squared variables:
[tex]\[ 36 \times a^2 \times b^2 = 36 a^2 b^2 \][/tex]

So, the expression [tex]\((-6 a b)^2\)[/tex] simplifies to [tex]\(36 a^2 b^2\)[/tex].

Among the answer choices:
- A. [tex]\(-36 a^2 b^2\)[/tex] is incorrect because the coefficient is negative.
- B. [tex]\(36 a^2 b^2\)[/tex] is correct because it matches our simplified expression.
- C. [tex]\(-12 a^2 b^2\)[/tex] is incorrect because both the coefficient and exponent values do not match.
- D. [tex]\(-12 a b^2\)[/tex] is incorrect because both the coefficient and the exponent values do not match.

Therefore, the correct answer is:

B. [tex]\(36 a^2 b^2\)[/tex]