To simplify the expression [tex]\(\left(6^2\right)^4\)[/tex], let's go through it step-by-step:
1. First, evaluate the power inside the parentheses:
[tex]\[
6^2 = 36
\][/tex]
2. Now, take the result from step 1 and raise it to the power of 4:
[tex]\[
36^4
\][/tex]
3. Notice that [tex]\(\left(6^2\right)^4\)[/tex] can be simplified using the property of exponents [tex]\((a^m)^n = a^{m \cdot n}\)[/tex]. In this case:
[tex]\[
\left(6^2\right)^4 = 6^{2 \cdot 4}
\][/tex]
4. Multiply the exponents:
[tex]\[
2 \cdot 4 = 8
\][/tex]
5. Hence, the simplified form of the expression is:
[tex]\[
6^8
\][/tex]
So, entering the correct answer:
[tex]\[ 6^{\boxed{8}} \][/tex]