Answer :

Sure! Let's evaluate the expression [tex]\(4! \cdot 3!\)[/tex] step-by-step.

### Step 1: Calculate [tex]\(4!\)[/tex]

The factorial of a number [tex]\(n\)[/tex] (written as [tex]\(n!\)[/tex]) is the product of all positive integers less than or equal to [tex]\(n\)[/tex]. So, for [tex]\(4!\)[/tex]:

[tex]\[ 4! = 4 \times 3 \times 2 \times 1 \][/tex]

Calculating this:

[tex]\[ 4 \times 3 = 12 \][/tex]

[tex]\[ 12 \times 2 = 24 \][/tex]

[tex]\[ 24 \times 1 = 24 \][/tex]

So, [tex]\(4! = 24\)[/tex].

### Step 2: Calculate [tex]\(3!\)[/tex]

Similarly, for [tex]\(3!\)[/tex]:

[tex]\[ 3! = 3 \times 2 \times 1 \][/tex]

Calculating this:

[tex]\[ 3 \times 2 = 6 \][/tex]

[tex]\[ 6 \times 1 = 6 \][/tex]

So, [tex]\(3! = 6\)[/tex].

### Step 3: Multiply [tex]\(4!\)[/tex] and [tex]\(3!\)[/tex]

Now that we have [tex]\(4! = 24\)[/tex] and [tex]\(3! = 6\)[/tex], we need to multiply these two values together:

[tex]\[ 4! \cdot 3! = 24 \cdot 6 \][/tex]

Calculating this:

[tex]\[ 24 \times 6 = 144 \][/tex]

### Conclusion

Therefore, the result of the expression [tex]\(4! \cdot 3!\)[/tex] is 144. So, the correct answer is 144.

Answer:

C. 144

Step-by-step explanation:

! in math is a factorial which means multiply this and all numbers below down to 1.

4! * 3!

(4*3*2*1)  * (3*2*1)

24 *6

144