Select the correct answer.

Simplify the expression:

[tex]\[ \sqrt[4]{768 x^8 y^5} \][/tex]

A. [tex]\( 4 x^3 y \sqrt[4]{3 x^2} \)[/tex]

B. [tex]\( 4 x^2 y \sqrt[4]{3 y} \)[/tex]

C. [tex]\( 4 x^2 y^2 \sqrt[4]{3 x^2 y} \)[/tex]

D. [tex]\( 2 x y^2 \sqrt[4]{2 x} \)[/tex]



Answer :

Sure, let's simplify the expression [tex]\(\sqrt[4]{768 x^8 y^5}\)[/tex] step-by-step.

Given expression:
[tex]\[ \sqrt[4]{768 x^8 y^5} \][/tex]

Step 1: Factorize the number inside the radical:
[tex]\[ 768 = 256 \times 3 = (4^4) \times 3 \][/tex]

Therefore, we can write:
[tex]\[ 768 x^8 y^5 = (4^4 \cdot 3) x^8 y^5 \][/tex]

Step 2: Break the expression under the fourth root into separate fourth roots:
[tex]\[ \sqrt[4]{768 x^8 y^5} = \sqrt[4]{4^4 \cdot 3 x^8 y^5} \][/tex]

Step 3: Apply the fourth root to each factor separately:
[tex]\[ \sqrt[4]{4^4 \cdot 3 x^8 y^5} = \sqrt[4]{4^4} \cdot \sqrt[4]{3} \cdot \sqrt[4]{x^8} \cdot \sqrt[4]{y^5} \][/tex]

Step 4: Simplify each fourth root:
[tex]\[ \sqrt[4]{4^4} = 4 \quad \text{(since } (4^4)^{(1/4)} = 4\text{)} \][/tex]
[tex]\[ \sqrt[4]{x^8} = x^2 \quad \text{(since } (x^8)^{(1/4)} = x^2\text{)} \][/tex]
[tex]\[ \sqrt[4]{y^5} = y \cdot y^{1/4} \quad \text{(since } y^5 = y \cdot y^4\text{)} \][/tex]

Now, combining these simplified parts, we get:
[tex]\[ 4 \cdot 3^{1/4} \cdot x^2 \cdot y \cdot y^{1/4} \][/tex]

This can be written as:
[tex]\[ 4 \cdot 3^{1/4} \cdot x^2 \cdot y^{1+1/4} \][/tex]
[tex]\[ = 4 \cdot 3^{1/4} \cdot x^2 \cdot y \cdot y^{1/4} \][/tex]

Thus, the simplified expression is:
[tex]\[ 4 x^2 y \sqrt[4]{3 y} \][/tex]

Therefore, the correct answer is:
[tex]\[ \boxed{4 x^2 y \sqrt[4]{3 y}} \][/tex]