Answer :
Let's go through the solution step-by-step:
1. Given Information:
- Initial dose of the drug, [tex]\(a\)[/tex]: 500 mg
- Remaining dose after 3 hours, [tex]\(y\)[/tex]: 325 mg
- Time, [tex]\(x\)[/tex]: 3 hours
We are to use the exponential decay model [tex]\(y = a \cdot b^x\)[/tex] to find the base multiplier [tex]\(b\)[/tex].
2. Substitute the given values into the equation [tex]\(y = a \cdot b^x\)[/tex]:
[tex]\[ 325 = 500 \cdot b^3 \][/tex]
3. Solve for [tex]\(b\)[/tex]:
- First, divide both sides of the equation by 500 to isolate [tex]\(b^3\)[/tex]:
[tex]\[ \frac{325}{500} = b^3 \][/tex]
[tex]\[ 0.65 = b^3 \][/tex]
- To find [tex]\(b\)[/tex], we need to take the cube root of 0.65. In mathematical terms, this involves raising 0.65 to the power of [tex]\(\frac{1}{3}\)[/tex]:
[tex]\[ b = (0.65)^{\frac{1}{3}} \][/tex]
4. Calculate the cube root of 0.65:
- Using a calculator, you can evaluate [tex]\((0.65)^{\frac{1}{3}}\)[/tex]:
[tex]\[ b \approx 0.866239 \][/tex]
5. Result:
- The base multiplier [tex]\(b\)[/tex] is approximately [tex]\(0.866239\)[/tex].
Hence, the exponential decay model for this problem is:
[tex]\[ y = 500 \cdot (0.866)^x \][/tex]
This model describes how the drug's concentration decreases over time. The base multiplier [tex]\(b \approx 0.866239\)[/tex] indicates that approximately 86.62% of the drug's concentration remains each hour.
1. Given Information:
- Initial dose of the drug, [tex]\(a\)[/tex]: 500 mg
- Remaining dose after 3 hours, [tex]\(y\)[/tex]: 325 mg
- Time, [tex]\(x\)[/tex]: 3 hours
We are to use the exponential decay model [tex]\(y = a \cdot b^x\)[/tex] to find the base multiplier [tex]\(b\)[/tex].
2. Substitute the given values into the equation [tex]\(y = a \cdot b^x\)[/tex]:
[tex]\[ 325 = 500 \cdot b^3 \][/tex]
3. Solve for [tex]\(b\)[/tex]:
- First, divide both sides of the equation by 500 to isolate [tex]\(b^3\)[/tex]:
[tex]\[ \frac{325}{500} = b^3 \][/tex]
[tex]\[ 0.65 = b^3 \][/tex]
- To find [tex]\(b\)[/tex], we need to take the cube root of 0.65. In mathematical terms, this involves raising 0.65 to the power of [tex]\(\frac{1}{3}\)[/tex]:
[tex]\[ b = (0.65)^{\frac{1}{3}} \][/tex]
4. Calculate the cube root of 0.65:
- Using a calculator, you can evaluate [tex]\((0.65)^{\frac{1}{3}}\)[/tex]:
[tex]\[ b \approx 0.866239 \][/tex]
5. Result:
- The base multiplier [tex]\(b\)[/tex] is approximately [tex]\(0.866239\)[/tex].
Hence, the exponential decay model for this problem is:
[tex]\[ y = 500 \cdot (0.866)^x \][/tex]
This model describes how the drug's concentration decreases over time. The base multiplier [tex]\(b \approx 0.866239\)[/tex] indicates that approximately 86.62% of the drug's concentration remains each hour.