Consider circle [tex]$T$[/tex] with radius 24 in. and [tex]$\theta=\frac{5 \pi}{6}$[/tex] radians.

What is the length of minor arc SV?

A. [tex][tex]$20 \pi$[/tex][/tex] in.
B. [tex]$28 \pi$[/tex] in.
C. [tex]$40 \pi$[/tex] in.
D. [tex][tex]$63 \pi$[/tex][/tex] in.



Answer :

To find the length of a minor arc in a circle, we use the formula for the arc length:

[tex]\[ \text{Arc length} = r \cdot \theta \][/tex]

where [tex]\( r \)[/tex] is the radius of the circle, and [tex]\( \theta \)[/tex] is the central angle in radians.

Given:
- The radius [tex]\( r \)[/tex] of circle [tex]\( T \)[/tex] is [tex]\( 24 \)[/tex] inches.
- The central angle [tex]\( \theta \)[/tex] is [tex]\( \frac{5 \pi}{6} \)[/tex] radians.

Substituting the values into the arc length formula:

[tex]\[ \text{Arc length} = 24 \cdot \left( \frac{5 \pi}{6} \right) \][/tex]

First, perform the multiplication inside the parentheses:

[tex]\[ 24 \cdot \frac{5 \pi}{6} = 24 \cdot \frac{5 \pi}{6} = 24 \cdot \frac{5}{6} \cdot \pi \][/tex]

Simplify [tex]\( 24 \cdot \frac{5}{6} \)[/tex]:

[tex]\[ 24 \div 6 = 4 \][/tex]

Then:

[tex]\[ 4 \cdot 5 = 20 \][/tex]

Thus:

[tex]\[ 24 \cdot \frac{5 \pi}{6} = 20 \pi \][/tex]

Therefore, the length of the minor arc [tex]\( SV \)[/tex] is:

[tex]\[ 20 \pi \, \text{in.} \][/tex]

So, the correct answer is:

[tex]\[ 20 \pi \, \text{in.} \][/tex]