The table shows various values of a linear function [tex]$f(x)$[/tex].
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline[tex]$x$[/tex] & -4 & 0 & 2 & 5 & 9 & 10 \\
\hline[tex]$f(x)$[/tex] & -11 & 1 & 7 & 16 & 28 & 31 \\
\hline
\end{tabular}

What is [tex]$f^{-1}(10)$[/tex]?

A. 31
B. 28
C. 3
D. 9



Answer :

To solve the problem of finding [tex]\( f^{-1}(10) \)[/tex] using the given table, we'll follow these detailed steps:

1. Understand the Function:
We are given a table representing a linear function [tex]\( f(x) \)[/tex]. We need to find the value of [tex]\( x \)[/tex] for which [tex]\( f(x) = 10 \)[/tex]. This inverse function is denoted as [tex]\( f^{-1}(10) \)[/tex].

2. Inspect the Table:
The table provides values of [tex]\( x \)[/tex] and the corresponding [tex]\( f(x) \)[/tex]. Let's write down the given pairs for clarity:
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|} \hline x & -4 & 0 & 2 & 5 & 9 & 10 \\ \hline f(x) & -11 & 1 & 7 & 16 & 28 & 31 \\ \hline \end{array} \][/tex]

3. Analyze the Target Value:
We need to find which [tex]\( x \)[/tex] value gives [tex]\( f(x) = 10 \)[/tex].

4. Search for [tex]\( f(x) = 10 \)[/tex]:
Look through the [tex]\( f(x) \)[/tex] values in the table:
- For [tex]\( x = -4 \)[/tex], [tex]\( f(x) = -11 \)[/tex]
- For [tex]\( x = 0 \)[/tex], [tex]\( f(x) = 1 \)[/tex]
- For [tex]\( x = 2 \)[/tex], [tex]\( f(x) = 7 \)[/tex]
- For [tex]\( x = 5 \)[/tex], [tex]\( f(x) = 16 \)[/tex]
- For [tex]\( x = 9 \)[/tex], [tex]\( f(x) = 28 \)[/tex]
- For [tex]\( x = 10 \)[/tex], [tex]\( f(x) = 31 \)[/tex]

Observe that none of these [tex]\( f(x) \)[/tex] values is equal to 10.

5. Conclusion:
Since none of the given [tex]\( f(x) \)[/tex] values equals 10, it indicates that there is no [tex]\( x \)[/tex] in the provided table for which [tex]\( f(x) = 10 \)[/tex].

Therefore, the solution is:

[tex]\[ f^{-1}(10) = \text{None} \][/tex]

None of the values provided as options (31, 28, 3, 9) are correct, since [tex]\( f(x) = 10 \)[/tex] does not exist in the table.