Answer :
To match each expression on the left with its equivalent on the right, let's evaluate each expression step-by-step and find its corresponding match.
1. Evaluating [tex]\(1,500 \times 100\)[/tex]:
To find the product of [tex]\(1,500\)[/tex] and [tex]\(100\)[/tex]:
[tex]\[ 1,500 \times 100 = 150,000 \][/tex]
So, [tex]\(1,500 \times 100\)[/tex] matches with [tex]\(150,000\)[/tex].
2. Evaluating [tex]\(150,000 \div 1000\)[/tex]:
To find the quotient of [tex]\(150,000\)[/tex] divided by [tex]\(1000\)[/tex]:
[tex]\[ 150,000 \div 1000 = 150 \][/tex]
So, [tex]\(150,000 \div 1000\)[/tex] matches with [tex]\(150\)[/tex].
3. Evaluating [tex]\(150 \times 100\)[/tex]:
To find the product of [tex]\(150\)[/tex] and [tex]\(100\)[/tex]:
[tex]\[ 150 \times 100 = 15,000 \][/tex]
So, [tex]\(150 \times 100\)[/tex] matches with [tex]\(15,000\)[/tex].
4. Evaluating [tex]\(15,000 \div 10\)[/tex]:
To find the quotient of [tex]\(15,000\)[/tex] divided by [tex]\(10\)[/tex]:
[tex]\[ 15,000 \div 10 = 1,500 \][/tex]
So, [tex]\(15,000 \div 10\)[/tex] matches with [tex]\(1,500\)[/tex].
Now we have matched all the expressions on the left with their correct equivalents on the right:
[tex]\[ \begin{array}{l l} 1,500 \times 100 & 150,000 \\ 150,000 \div 1000 & 150 \\ 150 \times 100 & 15,000 \\ 15,000 \div 10 & 1,500 \\ \end{array} \][/tex]
Based on these calculations, the matches are:
- [tex]\(1,500 \times 100\)[/tex] matches with [tex]\(150,000\)[/tex]
- [tex]\(150,000 \div 1000\)[/tex] matches with [tex]\(150\)[/tex]
- [tex]\(150 \times 100\)[/tex] matches with [tex]\(15,000\)[/tex]
- [tex]\(15,000 \div 10\)[/tex] matches with [tex]\(1,500\)[/tex]
The unused answer choices are:
- [tex]\(15\)[/tex]
- 1,500,000
1. Evaluating [tex]\(1,500 \times 100\)[/tex]:
To find the product of [tex]\(1,500\)[/tex] and [tex]\(100\)[/tex]:
[tex]\[ 1,500 \times 100 = 150,000 \][/tex]
So, [tex]\(1,500 \times 100\)[/tex] matches with [tex]\(150,000\)[/tex].
2. Evaluating [tex]\(150,000 \div 1000\)[/tex]:
To find the quotient of [tex]\(150,000\)[/tex] divided by [tex]\(1000\)[/tex]:
[tex]\[ 150,000 \div 1000 = 150 \][/tex]
So, [tex]\(150,000 \div 1000\)[/tex] matches with [tex]\(150\)[/tex].
3. Evaluating [tex]\(150 \times 100\)[/tex]:
To find the product of [tex]\(150\)[/tex] and [tex]\(100\)[/tex]:
[tex]\[ 150 \times 100 = 15,000 \][/tex]
So, [tex]\(150 \times 100\)[/tex] matches with [tex]\(15,000\)[/tex].
4. Evaluating [tex]\(15,000 \div 10\)[/tex]:
To find the quotient of [tex]\(15,000\)[/tex] divided by [tex]\(10\)[/tex]:
[tex]\[ 15,000 \div 10 = 1,500 \][/tex]
So, [tex]\(15,000 \div 10\)[/tex] matches with [tex]\(1,500\)[/tex].
Now we have matched all the expressions on the left with their correct equivalents on the right:
[tex]\[ \begin{array}{l l} 1,500 \times 100 & 150,000 \\ 150,000 \div 1000 & 150 \\ 150 \times 100 & 15,000 \\ 15,000 \div 10 & 1,500 \\ \end{array} \][/tex]
Based on these calculations, the matches are:
- [tex]\(1,500 \times 100\)[/tex] matches with [tex]\(150,000\)[/tex]
- [tex]\(150,000 \div 1000\)[/tex] matches with [tex]\(150\)[/tex]
- [tex]\(150 \times 100\)[/tex] matches with [tex]\(15,000\)[/tex]
- [tex]\(15,000 \div 10\)[/tex] matches with [tex]\(1,500\)[/tex]
The unused answer choices are:
- [tex]\(15\)[/tex]
- 1,500,000