What is the slope of the line [tex]$5x - 4y = 24$[/tex] in the [tex]$xy$[/tex]-coordinate plane?

A. [tex]-6[/tex]

B. [tex]-\frac{5}{4}[/tex]

C. [tex]-\frac{4}{5}[/tex]

D. [tex]\frac{4}{5}[/tex]

E. [tex]\frac{5}{4}[/tex]



Answer :

To determine the slope of the line given by the equation [tex]\( 5x - 4y = 24 \)[/tex], we need to convert this equation into the slope-intercept form, which is [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] represents the slope and [tex]\( b \)[/tex] represents the y-intercept.

Here's a step-by-step process:

1. Start with the given equation:
[tex]\[ 5x - 4y = 24 \][/tex]

2. Isolate the [tex]\( y \)[/tex]-term on one side of the equation. First, subtract [tex]\( 5x \)[/tex] from both sides:
[tex]\[ -4y = -5x + 24 \][/tex]

3. Solve for [tex]\( y \)[/tex] by dividing each term by [tex]\(-4\)[/tex]:
[tex]\[ y = \frac{-5x + 24}{-4} \][/tex]

4. Simplify the equation by distributing the division:
[tex]\[ y = \frac{-5}{-4}x + \frac{24}{-4} \][/tex]

5. Simplify the fractions:
[tex]\[ y = \frac{5}{4}x - 6 \][/tex]

The equation is now in slope-intercept form [tex]\( y = mx + b \)[/tex]. From this form, we can identify the slope [tex]\( m \)[/tex].

The slope [tex]\( m \)[/tex] is:
[tex]\[ \frac{5}{4} \][/tex]

Therefore, the correct answer is:
[tex]\[ \boxed{\frac{5}{4}} \][/tex]