Answer :
Para resolver este problema, debemos calcular la tasa de trabajo de cada persona y luego combinar estas tasas para encontrar cuánto tiempo tomarán juntos para completar toda la obra.
1. [tex]\( \frac{1}{3} \)[/tex] de la obra es completada por la primera persona en 3 días. Esto significa que su tasa de trabajo por día es:
[tex]\[ \frac{1/3 \, \text{obra}}{3 \, \text{días}} = \frac{1}{9} \, \text{obra/día} \][/tex]
2. [tex]\( \frac{1}{2} \)[/tex] de la obra es completada por la segunda persona en 6 días. Esto significa que su tasa de trabajo por día es:
[tex]\[ \frac{1/2 \, \text{obra}}{6 \, \text{días}} = \frac{1}{12} \, \text{obra/día} \][/tex]
3. Sumamos las tasas de trabajo de ambas personas para obtener la tasa de trabajo combinada:
[tex]\[ \text{Tasa combinada} = \frac{1}{9} \, \text{obra/día} + \frac{1}{12} \, \text{obra/día} \][/tex]
Para sumar estas fracciones, encontramos un denominador común. El mínimo común múltiplo de 9 y 12 es 36:
[tex]\[ \frac{1}{9} = \frac{4}{36} \quad \text{(multiplicamos el numerador y el denominador por 4)} \][/tex]
[tex]\[ \frac{1}{12} = \frac{3}{36} \quad \text{(multiplicamos el numerador y el denominador por 3)} \][/tex]
Así que,
[tex]\[ \text{Tasa combinada} = \frac{4}{36} + \frac{3}{36} = \frac{7}{36} \, \text{obra/día} \][/tex]
4. Ahora, para encontrar el tiempo que tomarán juntos para completar la obra, dividimos 1 (obra completa) entre la tasa combinada:
[tex]\[ \text{Tiempo para completar la obra} = \frac{1 \, \text{obra}}{\frac{7}{36} \, \text{obra/día}} = \frac{36}{7} \, \text{días} \][/tex]
[tex]\[ \frac{36}{7} \, \text{días} = 5 \frac{1}{7} \, \text{días} \][/tex]
Entonces, el tiempo que tomarán juntos para completar la obra es:
[tex]\[ 5 \frac{1}{7} \, \text{días} \][/tex]
La respuesta correcta es la opción C) [tex]\(5 \frac{1}{7} \, \text{días}\)[/tex].
1. [tex]\( \frac{1}{3} \)[/tex] de la obra es completada por la primera persona en 3 días. Esto significa que su tasa de trabajo por día es:
[tex]\[ \frac{1/3 \, \text{obra}}{3 \, \text{días}} = \frac{1}{9} \, \text{obra/día} \][/tex]
2. [tex]\( \frac{1}{2} \)[/tex] de la obra es completada por la segunda persona en 6 días. Esto significa que su tasa de trabajo por día es:
[tex]\[ \frac{1/2 \, \text{obra}}{6 \, \text{días}} = \frac{1}{12} \, \text{obra/día} \][/tex]
3. Sumamos las tasas de trabajo de ambas personas para obtener la tasa de trabajo combinada:
[tex]\[ \text{Tasa combinada} = \frac{1}{9} \, \text{obra/día} + \frac{1}{12} \, \text{obra/día} \][/tex]
Para sumar estas fracciones, encontramos un denominador común. El mínimo común múltiplo de 9 y 12 es 36:
[tex]\[ \frac{1}{9} = \frac{4}{36} \quad \text{(multiplicamos el numerador y el denominador por 4)} \][/tex]
[tex]\[ \frac{1}{12} = \frac{3}{36} \quad \text{(multiplicamos el numerador y el denominador por 3)} \][/tex]
Así que,
[tex]\[ \text{Tasa combinada} = \frac{4}{36} + \frac{3}{36} = \frac{7}{36} \, \text{obra/día} \][/tex]
4. Ahora, para encontrar el tiempo que tomarán juntos para completar la obra, dividimos 1 (obra completa) entre la tasa combinada:
[tex]\[ \text{Tiempo para completar la obra} = \frac{1 \, \text{obra}}{\frac{7}{36} \, \text{obra/día}} = \frac{36}{7} \, \text{días} \][/tex]
[tex]\[ \frac{36}{7} \, \text{días} = 5 \frac{1}{7} \, \text{días} \][/tex]
Entonces, el tiempo que tomarán juntos para completar la obra es:
[tex]\[ 5 \frac{1}{7} \, \text{días} \][/tex]
La respuesta correcta es la opción C) [tex]\(5 \frac{1}{7} \, \text{días}\)[/tex].