A line intersects the points [tex]\((8, -10)\)[/tex] and [tex]\((9, 4)\)[/tex]. Write the equation of this line in point-slope form, using the point [tex]\((8, -10)\)[/tex].

[tex]\[ y - (-10) = \square(x - 8) \][/tex]



Answer :

To determine the equation of the line that intersects the points [tex]\((8, -10)\)[/tex] and [tex]\((9, 4)\)[/tex] in point-slope form, follow these steps:

1. Find the slope ([tex]\(m\)[/tex]) of the line:

The slope of a line through two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by the formula:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]

Plugging in the points [tex]\((8, -10)\)[/tex] and [tex]\((9, 4)\)[/tex]:
[tex]\[ m = \frac{4 - (-10)}{9 - 8} = \frac{4 + 10}{9 - 8} = \frac{14}{1} = 14 \][/tex]

2. Use the point-slope form of the equation of a line:

The point-slope form of the equation of a line passing through a point [tex]\((x_1, y_1)\)[/tex] with slope [tex]\(m\)[/tex] is:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]

Here, we are given the point [tex]\((8, -10)\)[/tex] and the slope [tex]\(14\)[/tex].

3. Substitute the given point and the slope into the point-slope form:

Using the point [tex]\((8, -10)\)[/tex]:
[tex]\[ y - (-10) = 14(x - 8) \][/tex]

4. Simplify the equation:

Simplifying [tex]\(y - (-10)\)[/tex] gives:
[tex]\[ y + 10 = 14(x - 8) \][/tex]

So, the equation of the line in point-slope form, using the point [tex]\((8, -10)\)[/tex], is:
[tex]\[ y + 10 = 14(x - 8) \][/tex]