Solve the following equation for [tex]\theta[/tex] over the interval [tex][0, 2\pi)[/tex], giving exact simplified answers in radian units. If an equation has no solution, enter DNE. Multiple solutions should be entered as a comma-separated list.

[tex]\[
\begin{array}{l}
-1 + \sin (\theta) = -\sin (\theta) \\
\theta =
\end{array}
\][/tex]



Answer :

To solve the equation:

[tex]\[ -1 + \sin(\theta) = -\sin(\theta) \][/tex]

over the interval [tex]\([0, 2\pi)\)[/tex], we can follow these steps:

1. Combine like terms:
[tex]\[ -1 + \sin(\theta) + \sin(\theta) = 0 \][/tex]
[tex]\[ -1 + 2\sin(\theta) = 0 \][/tex]

2. Isolate [tex]\(\sin(\theta)\)[/tex]:
[tex]\[ 2\sin(\theta) = 1 \][/tex]

3. Solve for [tex]\(\sin(\theta)\)[/tex]:
[tex]\[ \sin(\theta) = \frac{1}{2} \][/tex]

4. Determine the values of [tex]\(\theta\)[/tex] that satisfy [tex]\(\sin(\theta) = \frac{1}{2}\)[/tex] within the interval [tex]\([0, 2\pi)\)[/tex]:

The sine function equals [tex]\(\frac{1}{2}\)[/tex] at [tex]\(\theta = \frac{\pi}{6}\)[/tex] in the first quadrant and [tex]\(\theta = \frac{5\pi}{6}\)[/tex] in the second quadrant.

Hence, the solutions to the equation [tex]\(-1+\sin (\theta)=-\sin (\theta)\)[/tex] in the interval [tex]\([0, 2\pi)\)[/tex] are:

[tex]\[ \theta = \frac{\pi}{6}, \frac{5\pi}{6} \][/tex]