Match each logarithm to its value.

A. [tex]\log_{2} 3[/tex]
Logarithm [tex]\square[/tex] is equal to [tex]-3[/tex].

B. [tex]\log_{81} 27[/tex]
Logarithm [tex]\square[/tex] is equal to [tex]\frac{3}{4}[/tex].

C. [tex]\log_{9} 27[/tex]
Logarithm [tex]\square[/tex] is equal to [tex]\frac{3}{2}[/tex].

D. [tex]\log_{27} 3[/tex]
Logarithm [tex]\square[/tex] is equal to [tex]\frac{1}{3}[/tex].



Answer :

To solve the problem, we will match each logarithm with its corresponding value. Let's carefully go through each logarithm:

### A. [tex]\(\log_{z} 2\)[/tex]

The value of [tex]\(\log_{z} 2\)[/tex] is -3. However, none of the provided logarithms here yield a value of -3.

### B. [tex]\(\log_{81} 27\)[/tex]

This is the logarithm of 27 with base 81. The value of [tex]\(\log_{81} 27\)[/tex] is given as [tex]\(\frac{3}{2}\)[/tex].

### C. [tex]\(\log_{9} 27\)[/tex]

This is the logarithm of 27 with base 9. The value of [tex]\(\log_{9} 27\)[/tex] is also [tex]\(\frac{3}{2}\)[/tex].

### D. [tex]\(\log_{27} 3\)[/tex]

This is the logarithm of 3 with base 27. The value of [tex]\(\log_{27} 3\)[/tex] is [tex]\(\frac{1}{3}\)[/tex].

### Summary

We now have the following matches:
- B. [tex]\(\log_{81} 27\)[/tex] is equal to [tex]\(\frac{3}{2}\)[/tex].
- C. [tex]\(\log_{9} 27\)[/tex] is equal to [tex]\(\frac{3}{2}\)[/tex].
- D. [tex]\(\log_{27} 3\)[/tex] is equal to [tex]\(\frac{1}{3}\)[/tex].

### Filling in the Blanks:

- [tex]\(\log_{81} 27\)[/tex] corresponds to logarithm B and is equal to [tex]\(\frac{3}{2}\)[/tex].
- [tex]\(\log_{9} 27\)[/tex] corresponds to logarithm C and is equal to [tex]\(\frac{3}{2}\)[/tex].
- [tex]\(\log_{27} 3\)[/tex] corresponds to logarithm D and is equal to [tex]\(\frac{1}{3}\)[/tex].