Answer :
Let's simplify the given expression step-by-step:
The expression to simplify is:
[tex]\[ -3(5x - 9) + 4 \][/tex]
Step 1: Distribute the -3 through the parentheses.
Multiply -3 with each term inside the parentheses:
[tex]\[ -3 \cdot 5x + (-3) \cdot (-9) \][/tex]
This yields:
[tex]\[ -15x + 27 \][/tex]
Step 2: Combine like terms.
Now, add the constant term 4 to the result from the previous step:
[tex]\[ -15x + 27 + 4 \][/tex]
Combine the constants 27 and 4:
[tex]\[ -15x + 31 \][/tex]
Therefore, the simplified expression is:
[tex]\[ -15x + 31 \][/tex]
So, the correct selection from the options should be:
[tex]\[ (B) -15x + 31 \][/tex]
Remember, the final simplified expression for [tex]\(-3(5x - 9) + 4\)[/tex] is:
[tex]\[ -15x + 31 \][/tex]
The expression to simplify is:
[tex]\[ -3(5x - 9) + 4 \][/tex]
Step 1: Distribute the -3 through the parentheses.
Multiply -3 with each term inside the parentheses:
[tex]\[ -3 \cdot 5x + (-3) \cdot (-9) \][/tex]
This yields:
[tex]\[ -15x + 27 \][/tex]
Step 2: Combine like terms.
Now, add the constant term 4 to the result from the previous step:
[tex]\[ -15x + 27 + 4 \][/tex]
Combine the constants 27 and 4:
[tex]\[ -15x + 31 \][/tex]
Therefore, the simplified expression is:
[tex]\[ -15x + 31 \][/tex]
So, the correct selection from the options should be:
[tex]\[ (B) -15x + 31 \][/tex]
Remember, the final simplified expression for [tex]\(-3(5x - 9) + 4\)[/tex] is:
[tex]\[ -15x + 31 \][/tex]