Which expression is equivalent to [tex]$\frac{\left(2 g^5\right)^3}{\left(4 h^2\right)^3}$[/tex]?

A. [tex]$\frac{g^{15}}{8 h^6}$[/tex]

B. [tex][tex]$\frac{g^5}{2 h^2}$[/tex][/tex]

C. [tex]$\frac{g^{15}}{2 h^6}$[/tex]

D. [tex]$\frac{g^8}{8 h^5}$[/tex]



Answer :

Let's start by simplifying the given expression step by step:

[tex]\[ \frac{(2 g^5)^3}{(4 h^2)^3} \][/tex]

1. Simplify the numerator [tex]\((2 g^5)^3\)[/tex]:

To simplify [tex]\((2 g^5)^3\)[/tex], apply the power of a product rule [tex]\((a \cdot b)^n = a^n \cdot b^n\)[/tex]:

[tex]\[ (2 g^5)^3 = 2^3 \cdot (g^5)^3 \][/tex]

Calculate each part:

[tex]\[ 2^3 = 8 \][/tex]

[tex]\[ (g^5)^3 = g^{5 \cdot 3} = g^{15} \][/tex]

Therefore,

[tex]\[ (2 g^5)^3 = 8 g^{15} \][/tex]

2. Simplify the denominator [tex]\((4 h^2)^3\)[/tex]:

To simplify [tex]\((4 h^2)^3\)[/tex], apply the power of a product rule [tex]\((a \cdot b)^n = a^n \cdot b^n\)[/tex]:

[tex]\[ (4 h^2)^3 = 4^3 \cdot (h^2)^3 \][/tex]

Calculate each part:

[tex]\[ 4^3 = 64 \][/tex]

[tex]\[ (h^2)^3 = h^{2 \cdot 3} = h^6 \][/tex]

Therefore,

[tex]\[ (4 h^2)^3 = 64 h^6 \][/tex]

3. Combine the simplified numerator and denominator:

Now we can form the fraction with the simplified numerator and denominator:

[tex]\[ \frac{8 g^{15}}{64 h^6} \][/tex]

4. Simplify the fraction:

Divide the numerator and the denominator by their greatest common divisor, which is 8:

[tex]\[ \frac{8 g^{15}}{64 h^6} = \frac{8}{64} \cdot \frac{g^{15}}{h^6} = \frac{1}{8} \cdot \frac{g^{15}}{h^6} = \frac{g^{15}}{8 h^6} \][/tex]

Hence, the expression [tex]\(\frac{(2 g^5)^3}{(4 h^2)^3}\)[/tex] simplifies to:

[tex]\[ \frac{g^{15}}{8 h^6} \][/tex]

So, the equivalent expression is [tex]\(\boxed{\frac{g^{15}}{8 h^6}}\)[/tex].