Which values of [tex]\( a \)[/tex] and [tex]\( b \)[/tex] make the equation true?

[tex]\[ \frac{(2xy)^4}{4xy} = 4x^a y^b \][/tex]

A. [tex]\( a=0, b=0 \)[/tex]

B. [tex]\( a=3, b=3 \)[/tex]

C. [tex]\( a=4, b=4 \)[/tex]

D. [tex]\( a=5, b=5 \)[/tex]



Answer :

To determine which values of [tex]\( a \)[/tex] and [tex]\( b \)[/tex] satisfy the equation
[tex]\[ \frac{(2xy)^4}{4xy} = 4x^a y^b, \][/tex]
we first simplify the left-hand side of the equation.

1. Simplify the expression [tex]\((2xy)^4\)[/tex]:
[tex]\[ (2xy)^4 = (2xy)(2xy)(2xy)(2xy) = 2^4 x^4 y^4 = 16x^4 y^4. \][/tex]

2. Now, substitute this back into the fractional term on the left-hand side:
[tex]\[ \frac{(2xy)^4}{4xy} = \frac{16x^4 y^4}{4xy}. \][/tex]

3. Simplify the fraction by dividing the numerator and the denominator by [tex]\( 4xy \)[/tex]:
[tex]\[ \frac{16x^4 y^4}{4xy} = \frac{16x^4 y^4}{4xy} = 4 \cdot \frac{x^4 y^4}{xy} = 4 \cdot x^{4-1} y^{4-1} = 4 x^3 y^3. \][/tex]

So, the left-hand side simplifies to:
[tex]\[ 4 x^3 y^3. \][/tex]

Next, we compare the simplified left-hand side to the right-hand side of the original equation to find the values of [tex]\( a \)[/tex] and [tex]\( b \)[/tex].

Given:
[tex]\[ 4 x^3 y^3 = 4 x^a y^b. \][/tex]

For the equation to hold for all [tex]\( x \)[/tex] and [tex]\( y \)[/tex], the exponents on both sides must be equal:
[tex]\[ a = 3 \quad \text{and} \quad b = 3. \][/tex]

Therefore, the values of [tex]\( a \)[/tex] and [tex]\( b \)[/tex] that satisfy the equation are:
[tex]\[ \boxed{a = 3, b = 3}. \][/tex]