What is the product of [tex]\frac{5}{11}[/tex] and [tex]\frac{3}{4}[/tex]?

A. [tex]\frac{8}{44}[/tex]
B. [tex]\frac{15}{44}[/tex]
C. [tex]\frac{8}{15}[/tex]
D. [tex]\frac{20}{33}[/tex]



Answer :

To find the product of the fractions [tex]\(\frac{5}{11}\)[/tex] and [tex]\(\frac{3}{4}\)[/tex], we need to multiply the numerators together and the denominators together. Here’s the detailed step-by-step solution:

1. Identify the numerators and denominators of the fractions:
- Numerator of the first fraction: [tex]\(5\)[/tex]
- Denominator of the first fraction: [tex]\(11\)[/tex]
- Numerator of the second fraction: [tex]\(3\)[/tex]
- Denominator of the second fraction: [tex]\(4\)[/tex]

2. Multiply the numerators together:
[tex]\[ 5 \times 3 = 15 \][/tex]

3. Multiply the denominators together:
[tex]\[ 11 \times 4 = 44 \][/tex]

4. Construct the product fraction:
[tex]\[ \frac{15}{44} \][/tex]

So, the product of [tex]\(\frac{5}{11}\)[/tex] and [tex]\(\frac{3}{4}\)[/tex] is [tex]\(\frac{15}{44}\)[/tex].

Therefore, the correct answer is:
[tex]\[ \boxed{\frac{15}{44}} \][/tex]