Answer :

Let's start by examining the given expression we need to simplify:

[tex]$ \frac{3x^4 - 2x^3 + 11}{-3x^4} $[/tex]

We can simplify this fraction by dividing each term in the numerator by the term in the denominator:

[tex]\[ \frac{3x^4}{-3x^4} - \frac{2x^3}{-3x^4} + \frac{11}{-3x^4} \][/tex]

Now, let's simplify each term separately:

1. Simplify the first term:
[tex]\[ \frac{3x^4}{-3x^4} = -1 \][/tex]

2. Simplify the second term:
[tex]\[ \frac{-2x^3}{3x^4} = \frac{-2}{3x} \][/tex]

3. Simplify the third term:
[tex]\[ \frac{11}{-3x^4} = -\frac{11}{3x^4} \][/tex]

Putting all these simplified terms together, we get:

[tex]\[ -1 + \frac{2}{3x} - \frac{11}{3x^4} \][/tex]

Thus, the simplified form of the given expression is:

[tex]$ -\frac{3 x^4 - 2 x^3 + 11}{3 x^4} $[/tex]