Answer :

To solve the problem, let's start with the given equation:

[tex]\[ \sqrt{ab} = 10 \][/tex]

First, we square both sides of the equation to eliminate the square root:

[tex]\[ ab = 100 \][/tex]

Next, we are asked to determine which of the given values of [tex]\(a + b\)[/tex] cannot exist. The values provided for [tex]\(a + b\)[/tex] are 29, 20, 25, and 19.

Consider the quadratic equation with roots [tex]\(a\)[/tex] and [tex]\(b\)[/tex]:

[tex]\[ x^2 - (a+b)x + ab = 0 \][/tex]

Substituting [tex]\(ab = 100\)[/tex] into the equation, we get:

[tex]\[ x^2 - (a + b)x + 100 = 0 \][/tex]

To determine if a quadratic equation has real roots, we use the discriminant ([tex]\(\Delta\)[/tex]), given by:

[tex]\[ \Delta = (a + b)^2 - 4ab \][/tex]

Substituting [tex]\(ab = 100\)[/tex] into the discriminant formula, we have:

[tex]\[ \Delta = (a + b)^2 - 4 \times 100 \][/tex]
[tex]\[ \Delta = (a + b)^2 - 400 \][/tex]

We need the discriminant to be non-negative for the quadratic equation to have real roots. Hence:

[tex]\[ (a + b)^2 - 400 \geq 0 \][/tex]
[tex]\[ (a + b)^2 \geq 400 \][/tex]
[tex]\[ |a + b| \geq 20 \][/tex]

We now check each given value of [tex]\(a + b\)[/tex]:

1. For [tex]\(a + b = 29\)[/tex]:
[tex]\[ |29| = 29 \geq 20 \][/tex]
The discriminant is non-negative, so 29 is a possible value.

2. For [tex]\(a + b = 20\)[/tex]:
[tex]\[ |20| = 20 \geq 20 \][/tex]
The discriminant is non-negative, so 20 is a possible value.

3. For [tex]\(a + b = 25\)[/tex]:
[tex]\[ |25| = 25 \geq 20 \][/tex]
The discriminant is non-negative, so 25 is a possible value.

4. For [tex]\(a + b = 19\)[/tex]:
[tex]\[ |19| = 19 < 20 \][/tex]
The discriminant is negative, so 19 is not a possible value.

Therefore, the value of [tex]\(a + b\)[/tex] that cannot exist is:
[tex]\[ \boxed{19} \][/tex]