Question 1 of 5

Solve: [tex]$6 - 0.2x = 2(6 - 0.6x)$[/tex]

A. [tex]$x = 6$[/tex]

B. [tex][tex]$x = 18$[/tex][/tex]

C. [tex]$x = 0$[/tex]

D. There are infinitely many solutions.



Answer :

To solve the equation [tex]\(6 - 0.2x = 2(6 - 0.6x)\)[/tex], follow these steps:

1. Expand the equation on the right-hand side:

The original equation is:
[tex]\[ 6 - 0.2x = 2(6 - 0.6x) \][/tex]

Distribute the 2 on the right-hand side:
[tex]\[ 6 - 0.2x = 2 \cdot 6 - 2 \cdot 0.6x \][/tex]
Simplify the expression:
[tex]\[ 6 - 0.2x = 12 - 1.2x \][/tex]

2. Isolate the variable [tex]\(x\)[/tex]:

To eliminate the fraction, let's get all the terms involving [tex]\(x\)[/tex] on one side and the constants on the other side. Add [tex]\(1.2x\)[/tex] to both sides:
[tex]\[ 6 - 0.2x + 1.2x = 12 - 1.2x + 1.2x \][/tex]
[tex]\[ 6 + 1.0x = 12 \][/tex]

Combine like terms:
[tex]\[ 6 + x = 12 \][/tex]

3. Solve for [tex]\(x\)[/tex]:

Subtract 6 from both sides to isolate [tex]\(x\)[/tex]:
[tex]\[ 6 + x - 6 = 12 - 6 \][/tex]
[tex]\[ x = 6 \][/tex]

So, the solution to the equation [tex]\(6 - 0.2x = 2(6 - 0.6x)\)[/tex] is [tex]\(x = 6\)[/tex].

Thus, the correct answer is:
A. [tex]\(x=6\)[/tex]