18.35 mL of an HCN solution were titrated with 35.4 mL of a 0.268 M NaOH solution to reach the equivalence point. What is the molarity of the HCN solution?

[tex]\[
\begin{array}{c}
HCN + NaOH \rightarrow NaCN + H_2O \\
\text{Molarity (M) of HCN = ?}
\end{array}
\][/tex]



Answer :

To determine the molarity of the HCN solution, follow these steps:

1. Convert the volumes from milliliters to liters:

[tex]\[ \text{Volume of HCN solution:} \quad 18.35 \, \text{mL} = \frac{18.35}{1000} \, \text{L} = 0.01835 \, \text{L} \][/tex]

[tex]\[ \text{Volume of NaOH solution:} \quad 35.4 \, \text{mL} = \frac{35.4}{1000} \, \text{L} = 0.0354 \, \text{L} \][/tex]

2. Calculate the moles of NaOH used:

[tex]\[ \text{Molarity of NaOH solution:} \quad 0.268 \, \text{M} \][/tex]

[tex]\[ \text{Moles of NaOH} = \text{Molarity of NaOH} \times \text{Volume of NaOH in liters} \][/tex]

Substituting the given values:

[tex]\[ \text{Moles of NaOH} = 0.268 \, \text{M} \times 0.0354 \, \text{L} = 0.0094872 \, \text{moles} \][/tex]

3. Determine the moles of HCN involved in the reaction:

The reaction is:
[tex]\[ \text{HCN} + \text{NaOH} \rightarrow \text{NaCN} + \text{H}_2\text{O} \][/tex]

From the balanced chemical equation, we can see that the mole ratio of HCN to NaOH is 1:1. Thus, the moles of HCN equals the moles of NaOH:

[tex]\[ \text{Moles of HCN} = 0.0094872 \, \text{moles} \][/tex]

4. Calculate the molarity of the HCN solution:

[tex]\[ \text{Molarity of HCN} = \frac{\text{Moles of HCN}}{\text{Volume of HCN in liters}} \][/tex]

Substituting the known values:

[tex]\[ \text{Molarity of HCN} = \frac{0.0094872 \, \text{moles}}{0.01835 \, \text{L}} = 0.517 \, \text{M} \][/tex]

Therefore, the molarity of the HCN solution is approximately [tex]\( 0.517 \, \text{M} \)[/tex].