Translate and solve: The difference of [tex]$f$[/tex] and [tex]$\frac{1}{3}$[/tex] is [tex][tex]$\frac{2}{3}$[/tex][/tex].

Provide your answer below:
[tex]\[ f = \][/tex]



Answer :

To solve the given problem, we need to translate the provided mathematical statement into an equation and solve it step-by-step.

The statement says: "The difference of [tex]\( f \)[/tex] and [tex]\( \frac{1}{3} \)[/tex] is [tex]\( \frac{2}{3} \)[/tex]."

1. Translate the Statement into an Equation:

The phrase "the difference of [tex]\( f \)[/tex] and [tex]\( \frac{1}{3} \)[/tex]" means we subtract [tex]\( \frac{1}{3} \)[/tex] from [tex]\( f \)[/tex]. Thus, the equation can be written as:
[tex]\[ f - \frac{1}{3} = \frac{2}{3} \][/tex]

2. Solve for [tex]\( f \)[/tex]:

To find [tex]\( f \)[/tex], we need to isolate [tex]\( f \)[/tex] on one side of the equation. We can do this by adding [tex]\( \frac{1}{3} \)[/tex] to both sides of the equation:
[tex]\[ f - \frac{1}{3} + \frac{1}{3} = \frac{2}{3} + \frac{1}{3} \][/tex]

Simplifying the left side, we have:
[tex]\[ f = \frac{2}{3} + \frac{1}{3} \][/tex]

3. Perform the Arithmetic:

Now, we need to add the fractions on the right side. Since the denominators are the same, we can add the numerators directly:
[tex]\[ \frac{2}{3} + \frac{1}{3} = \frac{2 + 1}{3} = \frac{3}{3} \][/tex]

4. Simplify the Fraction:

Finally, simplify [tex]\( \frac{3}{3} \)[/tex]:
[tex]\[ \frac{3}{3} = 1 \][/tex]

Therefore, the value of [tex]\( f \)[/tex] is:
[tex]\[ f = 1 \][/tex]