Translate and solve: The sum of [tex]\(-2m\)[/tex] and [tex]\(3m\)[/tex] is equal to the difference of [tex]\(\frac{1}{2}\)[/tex] and [tex]\(\frac{1}{3}\)[/tex].

Provide your answer below:

[tex]\[ m = \][/tex]



Answer :

To solve the equation, let's start by translating the given statement into a mathematical equation:

The sum of [tex]\(-2m\)[/tex] and [tex]\(3m\)[/tex] is equal to the difference of [tex]\(\frac{1}{2}\)[/tex] and [tex]\(\frac{1}{3}\)[/tex].

So, we can write it as:

[tex]\[ -2m + 3m = \frac{1}{2} - \frac{1}{3} \][/tex]

Next, let's simplify the left side of the equation:

[tex]\[ -2m + 3m = (3m - 2m) = m \][/tex]

Now our equation is:

[tex]\[ m = \frac{1}{2} - \frac{1}{3} \][/tex]

To solve for [tex]\(m\)[/tex], we need to calculate the right side of the equation. To do this, we should first convert the fractions to a common denominator. The denominators are 2 and 3, so the least common denominator is 6.

Convert [tex]\(\frac{1}{2}\)[/tex] to the common denominator of 6:

[tex]\[ \frac{1}{2} = \frac{1 \times 3}{2 \times 3} = \frac{3}{6} \][/tex]

Convert [tex]\(\frac{1}{3}\)[/tex] to the common denominator of 6:

[tex]\[ \frac{1}{3} = \frac{1 \times 2}{3 \times 2} = \frac{2}{6} \][/tex]

Now we can subtract these fractions:

[tex]\[ \frac{1}{2} - \frac{1}{3} = \frac{3}{6} - \frac{2}{6} = \frac{3 - 2}{6} = \frac{1}{6} \][/tex]

So, we have:

[tex]\[ m = \frac{1}{6} \][/tex]

Therefore, the solution to the equation is:

[tex]\[ m = 0.16666666666666666 \][/tex]