Answer :

Let's solve the given expression step-by-step:

The expression we need to evaluate is:
[tex]\[ 2 \sqrt{144} + (4 + 2 - 6 + 2)^2 - \sqrt{4} + \sqrt{25} \][/tex]

1. Calculate [tex]\(2 \sqrt{144}\)[/tex]:

[tex]\[ \sqrt{144} = 12 \][/tex]

Therefore,

[tex]\[ 2 \sqrt{144} = 2 \times 12 = 24 \][/tex]

2. Evaluate the inner expression [tex]\((4 + 2 - 6 + 2)\)[/tex]:

[tex]\[ 4 + 2 = 6 \][/tex]
[tex]\[ 6 - 6 = 0 \][/tex]
[tex]\[ 0 + 2 = 2 \][/tex]

Thus, the value of the inner expression is [tex]\(2\)[/tex].

3. Square the result of the inner expression:

[tex]\[ (2)^2 = 2^2 = 4 \][/tex]

4. Calculate [tex]\(\sqrt{4}\)[/tex]:

[tex]\[ \sqrt{4} = 2 \][/tex]

5. Calculate [tex]\(\sqrt{25}\)[/tex]:

[tex]\[ \sqrt{25} = 5 \][/tex]

6. Combine all the parts:

Now we have all the values we need to substitute back into the original expression:
[tex]\[ 2 \sqrt{144} = 24 \][/tex]
[tex]\[ (4 + 2 - 6 + 2)^2 = 4 \][/tex]
[tex]\[ - \sqrt{4} = -2 \][/tex]
[tex]\[ + \sqrt{25} = 5 \][/tex]

Combining these, we get:

[tex]\[ 24 + 4 - 2 + 5 \][/tex]

Step-by-step calculation:

[tex]\[ 24 + 4 = 28 \][/tex]
[tex]\[ 28 - 2 = 26 \][/tex]
[tex]\[ 26 + 5 = 31 \][/tex]

Therefore, the value of the entire expression is:
[tex]\[ \boxed{31} \][/tex]