Answer :
Let's solve the given expression step-by-step:
The expression we need to evaluate is:
[tex]\[ 2 \sqrt{144} + (4 + 2 - 6 + 2)^2 - \sqrt{4} + \sqrt{25} \][/tex]
1. Calculate [tex]\(2 \sqrt{144}\)[/tex]:
[tex]\[ \sqrt{144} = 12 \][/tex]
Therefore,
[tex]\[ 2 \sqrt{144} = 2 \times 12 = 24 \][/tex]
2. Evaluate the inner expression [tex]\((4 + 2 - 6 + 2)\)[/tex]:
[tex]\[ 4 + 2 = 6 \][/tex]
[tex]\[ 6 - 6 = 0 \][/tex]
[tex]\[ 0 + 2 = 2 \][/tex]
Thus, the value of the inner expression is [tex]\(2\)[/tex].
3. Square the result of the inner expression:
[tex]\[ (2)^2 = 2^2 = 4 \][/tex]
4. Calculate [tex]\(\sqrt{4}\)[/tex]:
[tex]\[ \sqrt{4} = 2 \][/tex]
5. Calculate [tex]\(\sqrt{25}\)[/tex]:
[tex]\[ \sqrt{25} = 5 \][/tex]
6. Combine all the parts:
Now we have all the values we need to substitute back into the original expression:
[tex]\[ 2 \sqrt{144} = 24 \][/tex]
[tex]\[ (4 + 2 - 6 + 2)^2 = 4 \][/tex]
[tex]\[ - \sqrt{4} = -2 \][/tex]
[tex]\[ + \sqrt{25} = 5 \][/tex]
Combining these, we get:
[tex]\[ 24 + 4 - 2 + 5 \][/tex]
Step-by-step calculation:
[tex]\[ 24 + 4 = 28 \][/tex]
[tex]\[ 28 - 2 = 26 \][/tex]
[tex]\[ 26 + 5 = 31 \][/tex]
Therefore, the value of the entire expression is:
[tex]\[ \boxed{31} \][/tex]
The expression we need to evaluate is:
[tex]\[ 2 \sqrt{144} + (4 + 2 - 6 + 2)^2 - \sqrt{4} + \sqrt{25} \][/tex]
1. Calculate [tex]\(2 \sqrt{144}\)[/tex]:
[tex]\[ \sqrt{144} = 12 \][/tex]
Therefore,
[tex]\[ 2 \sqrt{144} = 2 \times 12 = 24 \][/tex]
2. Evaluate the inner expression [tex]\((4 + 2 - 6 + 2)\)[/tex]:
[tex]\[ 4 + 2 = 6 \][/tex]
[tex]\[ 6 - 6 = 0 \][/tex]
[tex]\[ 0 + 2 = 2 \][/tex]
Thus, the value of the inner expression is [tex]\(2\)[/tex].
3. Square the result of the inner expression:
[tex]\[ (2)^2 = 2^2 = 4 \][/tex]
4. Calculate [tex]\(\sqrt{4}\)[/tex]:
[tex]\[ \sqrt{4} = 2 \][/tex]
5. Calculate [tex]\(\sqrt{25}\)[/tex]:
[tex]\[ \sqrt{25} = 5 \][/tex]
6. Combine all the parts:
Now we have all the values we need to substitute back into the original expression:
[tex]\[ 2 \sqrt{144} = 24 \][/tex]
[tex]\[ (4 + 2 - 6 + 2)^2 = 4 \][/tex]
[tex]\[ - \sqrt{4} = -2 \][/tex]
[tex]\[ + \sqrt{25} = 5 \][/tex]
Combining these, we get:
[tex]\[ 24 + 4 - 2 + 5 \][/tex]
Step-by-step calculation:
[tex]\[ 24 + 4 = 28 \][/tex]
[tex]\[ 28 - 2 = 26 \][/tex]
[tex]\[ 26 + 5 = 31 \][/tex]
Therefore, the value of the entire expression is:
[tex]\[ \boxed{31} \][/tex]