Solve [tex]$5x^2 + 1 = 51$[/tex] by finding square roots.

A. [tex]$x = \sqrt{10}, -\sqrt{10}$[/tex]
B. [tex][tex]$x = 50, -50$[/tex][/tex]
C. [tex]$x = \sqrt{50}, -\sqrt{50}$[/tex]
D. [tex]$x = 10, -10$[/tex]



Answer :

To solve the equation [tex]\(5x^2 + 1 = 51\)[/tex] by finding square roots, follow these steps:

1. Isolate the quadratic term:
[tex]\[ 5x^2 + 1 = 51 \][/tex]
Subtract 1 from both sides to isolate the term with [tex]\(x^2\)[/tex]:
[tex]\[ 5x^2 + 1 - 1 = 51 - 1 \implies 5x^2 = 50 \][/tex]

2. Solve for [tex]\(x^2\)[/tex]:
Divide both sides of the equation by 5 to solve for [tex]\(x^2\)[/tex]:
[tex]\[ x^2 = \frac{50}{5} \implies x^2 = 10 \][/tex]

3. Take the square root of both sides:
Find the square roots to solve for [tex]\(x\)[/tex]. There are two possible solutions, the positive and the negative square roots:
[tex]\[ x = \sqrt{10} \quad \text{and} \quad x = -\sqrt{10} \][/tex]

So, the solutions to the equation [tex]\(5x^2 + 1 = 51\)[/tex] are:
[tex]\[ x = \sqrt{10} \approx 3.1622776601683795 \quad \text{and} \quad x = -\sqrt{10} \approx -3.1622776601683795 \][/tex]

Thus, the correct option from the given choices is [tex]\(x = \sqrt{10}, -\sqrt{10}\)[/tex].