Solve for [tex]$x$[/tex].

Hint: Make sure to distribute over both terms inside the parentheses when applying the distributive property.

[tex]3(2x - 4) = 3x - 5(x + 1)[/tex]

A. [tex]\frac{8}{7}[/tex]
B. [tex]\frac{7}{8}[/tex]
C. [tex]\frac{-7}{8}[/tex]
D. [tex]\frac{-8}{7}[/tex]



Answer :

To solve the equation [tex]\( 3(2x - 4) = 3x - 5(x + 1) \)[/tex], let's go through each step methodically and apply algebraic principles.

1. Distribute over both terms inside the parenthesis on both sides of the equation:
[tex]\[ 3(2x - 4) = 6x - 12 \][/tex]
[tex]\[ -5(x + 1) = -5x - 5 \][/tex]
So, substituting back into the equation, we get:
[tex]\[ 6x - 12 = 3x - 5x - 5 \][/tex]

2. Combine like terms on the right side:
[tex]\[ 3x - 5x = -2x \][/tex]
Substituting back into the equation, we get:
[tex]\[ 6x - 12 = -2x - 5 \][/tex]

3. Isolate the variable terms on one side. Add [tex]\(2x\)[/tex] to both sides to get all x terms on one side:
[tex]\[ 6x + 2x - 12 = -5 \][/tex]

4. Combine like terms on the left side:
[tex]\[ 8x - 12 = -5 \][/tex]

5. Isolate the constant term on one side. Add [tex]\(12\)[/tex] to both sides to get rid of the constant term on the left:
[tex]\[ 8x - 12 + 12 = -5 + 12 \][/tex]
Simplifies to:
[tex]\[ 8x = 7 \][/tex]

6. Solve for [tex]\(x\)[/tex] by dividing both sides by 8:
[tex]\[ x = \frac{7}{8} \][/tex]

Therefore, the solution to the equation [tex]\( 3(2x - 4) = 3x - 5(x + 1) \)[/tex] is:
[tex]\[ \boxed{\frac{7}{8}} \][/tex]

The correct answer is [tex]\( \boxed{B} \)[/tex].