Answer :
To evaluate the function [tex]\( f(x) = 20x - 4 \)[/tex] for specific values of [tex]\( x \)[/tex], we'll follow these steps for each value:
### Part (a): Evaluate [tex]\( f(x) \)[/tex] for [tex]\( x = -2 \)[/tex]
1. Substitute [tex]\( x = -2 \)[/tex] into the function [tex]\( f(x) = 20x - 4 \)[/tex].
2. Perform the calculation:
[tex]\[ f(-2) = 20(-2) - 4 \][/tex]
3. Multiply:
[tex]\[ 20 \times (-2) = -40 \][/tex]
4. Subtract 4 from -40:
[tex]\[ -40 - 4 = -44 \][/tex]
So, [tex]\( f(-2) = -44 \)[/tex].
### Part (b): Evaluate [tex]\( f(x) \)[/tex] for [tex]\( x = 8 \)[/tex]
1. Substitute [tex]\( x = 8 \)[/tex] into the function [tex]\( f(x) = 20x - 4 \)[/tex].
2. Perform the calculation:
[tex]\[ f(8) = 20 \times 8 - 4 \][/tex]
3. Multiply:
[tex]\[ 20 \times 8 = 160 \][/tex]
4. Subtract 4 from 160:
[tex]\[ 160 - 4 = 156 \][/tex]
So, [tex]\( f(8) = 156 \)[/tex].
### Summary
The results of evaluating the function are:
- (a) [tex]\( f(-2) = -44 \)[/tex]
- (b) [tex]\( f(8) = 156 \)[/tex]
Therefore, the correct answer is:
A) (a) [tex]\( f(-2) = -44 \)[/tex], (b) [tex]\( f(8) = 156 \)[/tex]
### Part (a): Evaluate [tex]\( f(x) \)[/tex] for [tex]\( x = -2 \)[/tex]
1. Substitute [tex]\( x = -2 \)[/tex] into the function [tex]\( f(x) = 20x - 4 \)[/tex].
2. Perform the calculation:
[tex]\[ f(-2) = 20(-2) - 4 \][/tex]
3. Multiply:
[tex]\[ 20 \times (-2) = -40 \][/tex]
4. Subtract 4 from -40:
[tex]\[ -40 - 4 = -44 \][/tex]
So, [tex]\( f(-2) = -44 \)[/tex].
### Part (b): Evaluate [tex]\( f(x) \)[/tex] for [tex]\( x = 8 \)[/tex]
1. Substitute [tex]\( x = 8 \)[/tex] into the function [tex]\( f(x) = 20x - 4 \)[/tex].
2. Perform the calculation:
[tex]\[ f(8) = 20 \times 8 - 4 \][/tex]
3. Multiply:
[tex]\[ 20 \times 8 = 160 \][/tex]
4. Subtract 4 from 160:
[tex]\[ 160 - 4 = 156 \][/tex]
So, [tex]\( f(8) = 156 \)[/tex].
### Summary
The results of evaluating the function are:
- (a) [tex]\( f(-2) = -44 \)[/tex]
- (b) [tex]\( f(8) = 156 \)[/tex]
Therefore, the correct answer is:
A) (a) [tex]\( f(-2) = -44 \)[/tex], (b) [tex]\( f(8) = 156 \)[/tex]