Answer :
Let's break down the compositions of the functions step by step.
Given the functions:
[tex]\[ f(x) = 4x \][/tex]
[tex]\[ g(x) = x^2 - 1 \][/tex]
We need to find:
[tex]\[ f(g(x)) \][/tex]
[tex]\[ g(f(x)) \][/tex]
### Composition [tex]\( f(g(x)) \)[/tex]
1. Start with the inner function [tex]\( g(x) \)[/tex].
[tex]\[ g(x) = x^2 - 1 \][/tex]
2. Substitute [tex]\( g(x) \)[/tex] into [tex]\( f \)[/tex].
[tex]\[ f(g(x)) = f(x^2 - 1) \][/tex]
3. Use the definition of [tex]\( f \)[/tex]:
[tex]\[ f(x) = 4x \][/tex]
So,
[tex]\[ f(x^2 - 1) = 4(x^2 - 1) \][/tex]
4. Simplify the expression:
[tex]\[ 4(x^2 - 1) = 4x^2 - 4 \][/tex]
So,
[tex]\[ f(g(x)) = 4x^2 - 4 \][/tex]
### Composition [tex]\( g(f(x)) \)[/tex]
1. Start with the inner function [tex]\( f(x) \)[/tex].
[tex]\[ f(x) = 4x \][/tex]
2. Substitute [tex]\( f(x) \)[/tex] into [tex]\( g \)[/tex].
[tex]\[ g(f(x)) = g(4x) \][/tex]
3. Use the definition of [tex]\( g \)[/tex]:
[tex]\[ g(x) = x^2 - 1 \][/tex]
So,
[tex]\[ g(4x) = (4x)^2 - 1 \][/tex]
4. Simplify the expression:
[tex]\[ (4x)^2 - 1 = 16x^2 - 1 \][/tex]
So,
[tex]\[ g(f(x)) = 16x^2 - 1 \][/tex]
### Final Compositions
The compositions of the given functions are:
[tex]\[ f(g(x)) = 4x^2 - 4 \][/tex]
[tex]\[ g(f(x)) = 16x^2 - 1 \][/tex]
Thus, the correct answer is:
A. [tex]\( f \circ g(x) = 4x^2 - 4 \)[/tex]
[tex]\[ g \circ f(x) = 16x^2 - 1 \][/tex]
Given the functions:
[tex]\[ f(x) = 4x \][/tex]
[tex]\[ g(x) = x^2 - 1 \][/tex]
We need to find:
[tex]\[ f(g(x)) \][/tex]
[tex]\[ g(f(x)) \][/tex]
### Composition [tex]\( f(g(x)) \)[/tex]
1. Start with the inner function [tex]\( g(x) \)[/tex].
[tex]\[ g(x) = x^2 - 1 \][/tex]
2. Substitute [tex]\( g(x) \)[/tex] into [tex]\( f \)[/tex].
[tex]\[ f(g(x)) = f(x^2 - 1) \][/tex]
3. Use the definition of [tex]\( f \)[/tex]:
[tex]\[ f(x) = 4x \][/tex]
So,
[tex]\[ f(x^2 - 1) = 4(x^2 - 1) \][/tex]
4. Simplify the expression:
[tex]\[ 4(x^2 - 1) = 4x^2 - 4 \][/tex]
So,
[tex]\[ f(g(x)) = 4x^2 - 4 \][/tex]
### Composition [tex]\( g(f(x)) \)[/tex]
1. Start with the inner function [tex]\( f(x) \)[/tex].
[tex]\[ f(x) = 4x \][/tex]
2. Substitute [tex]\( f(x) \)[/tex] into [tex]\( g \)[/tex].
[tex]\[ g(f(x)) = g(4x) \][/tex]
3. Use the definition of [tex]\( g \)[/tex]:
[tex]\[ g(x) = x^2 - 1 \][/tex]
So,
[tex]\[ g(4x) = (4x)^2 - 1 \][/tex]
4. Simplify the expression:
[tex]\[ (4x)^2 - 1 = 16x^2 - 1 \][/tex]
So,
[tex]\[ g(f(x)) = 16x^2 - 1 \][/tex]
### Final Compositions
The compositions of the given functions are:
[tex]\[ f(g(x)) = 4x^2 - 4 \][/tex]
[tex]\[ g(f(x)) = 16x^2 - 1 \][/tex]
Thus, the correct answer is:
A. [tex]\( f \circ g(x) = 4x^2 - 4 \)[/tex]
[tex]\[ g \circ f(x) = 16x^2 - 1 \][/tex]