For the following questions, you will use the quadratic formula:

[tex]\[
x=\frac{-b \pm \sqrt{b^2-4ac}}{2a} \quad \text{for} \quad ax^2 + bx + c = 0
\][/tex]

Solve for [tex]\( x \)[/tex]. Write both solutions, separated by a comma.

[tex]\[
3x^2 - 7x + 4 = 0
\][/tex]

Enter the correct answer:

[tex]\[
\square
\][/tex]



Answer :

To solve the quadratic equation [tex]\(3x^2 - 7x + 4 = 0\)[/tex] using the quadratic formula:

[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]

we need to identify the coefficients [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] first:
- [tex]\(a = 3\)[/tex]
- [tex]\(b = -7\)[/tex]
- [tex]\(c = 4\)[/tex]

Next, we calculate the discriminant:

[tex]\[ \text{Discriminant} = b^2 - 4ac \][/tex]
[tex]\[ \text{Discriminant} = (-7)^2 - 4(3)(4) \][/tex]
[tex]\[ \text{Discriminant} = 49 - 48 \][/tex]
[tex]\[ \text{Discriminant} = 1 \][/tex]

Since the discriminant is positive, we will have two real solutions. Let's calculate these solutions using the quadratic formula:

[tex]\[ x = \frac{-b \pm \sqrt{\text{Discriminant}}}{2a} \][/tex]

Substituting in the values for [tex]\(a\)[/tex], [tex]\(b\)[/tex], and the discriminant:

[tex]\[ x = \frac{-(-7) \pm \sqrt{1}}{2(3)} \][/tex]
[tex]\[ x = \frac{7 \pm 1}{6} \][/tex]

We now find the two solutions:

For the positive sign:

[tex]\[ x_1 = \frac{7 + 1}{6} = \frac{8}{6} = \frac{4}{3} \approx 1.3333333333333333 \][/tex]

For the negative sign:

[tex]\[ x_2 = \frac{7 - 1}{6} = \frac{6}{6} = 1 \][/tex]

Therefore, the solutions to the equation [tex]\(3x^2 - 7x + 4 = 0\)[/tex] are:

[tex]\[ x = \frac{4}{3}, 1 \][/tex]

Or in decimal form:

[tex]\[ x \approx 1.3333333333333333, 1 \][/tex]

Thus, the correct answer is:

[tex]\[ 1.3333333333333333, 1 \][/tex]