Answer :
Para hallar la inversa de una matriz, debemos determinar si tal inversa existe evaluando si el determinante de la matriz es distinto de cero. Si el determinante es cero, la matriz no tiene inversa. De lo contrario, se puede calcular la inversa usando varios métodos, como la adjunta acompañado del determinante, o métodos numéricos.
Analicemos cada una de las cuatro matrices [tex]\( A \)[/tex], [tex]\( B \)[/tex], [tex]\( C \)[/tex] y [tex]\( D \)[/tex], y sus inversas si existen:
### Matriz [tex]\( A \)[/tex]:
La matriz [tex]\( A \)[/tex] es:
[tex]\[ A = \begin{pmatrix} 3 & -2 & 0 & 1 \\ 0 & 4 & 5 & 1 \\ -1 & 1 & 2 & 3 \\ -1 & 2 & 3 & 6 \end{pmatrix} \][/tex]
La inversa de [tex]\( A \)[/tex] es:
[tex]\[ A^{-1} = \begin{pmatrix} 0.17741935 & 0.11290323 & -0.83870968 & 0.37096774 \\ -0.22580645 & 0.12903226 & -1.38709677 & 0.70967742 \\ 0.17741935 & 0.11290323 & 1.16129032 & -0.62903226 \\ 0.01612903 & -0.08064516 & -0.25806452 & 0.30645161 \end{pmatrix} \][/tex]
### Matriz [tex]\( B \)[/tex]:
La matriz [tex]\( B \)[/tex] es:
[tex]\[ B = \begin{pmatrix} 1 & -1 & 4 & 2 \\ 2 & 0 & 3 & 1 \\ 4 & -2 & 1 & 0 \\ -2 & 4 & -1 & 2 \end{pmatrix} \][/tex]
La inversa de [tex]\( B \)[/tex] es:
[tex]\[ B^{-1} = \begin{pmatrix} -0.16666667 & 0.16666667 & 0.25 & 0.08333333 \\ -0.36666667 & 0.56666667 & -0.15 & 0.08333333 \\ -0.06666667 & 0.46666667 & -0.3 & -0.16666667 \\ 0.53333333 & -0.73333333 & 0.4 & 0.33333333 \end{pmatrix} \][/tex]
### Matriz [tex]\( C \)[/tex]:
La matriz [tex]\( C \)[/tex] es:
[tex]\[ C = \begin{pmatrix} 3 & 1 & 5 & 7 \\ 2 & 1 & 3 & 4 \\ 4 & 1 & 6 & 8 \\ 4 & 1 & 7 & 9 \end{pmatrix} \][/tex]
La inversa de [tex]\( C \)[/tex] es:
[tex]\[ C^{-1} = \begin{pmatrix} -1 & 0 & 2 & -1 \\ 0 & 2 & -1 & 0 \\ -2 & 1 & -1 & 2 \\ 2 & -1 & 0 & -1 \end{pmatrix} \][/tex]
### Matriz [tex]\( D \)[/tex]:
La matriz [tex]\( D \)[/tex] es:
[tex]\[ D = \begin{pmatrix} 1 & -2 & 1 & 1 \\ 3 & -5 & 5 & 3 \\ -5 & 12 & 0 & -4 \\ 7 & -17 & 3 & 10 \end{pmatrix} \][/tex]
La inversa de [tex]\( D \)[/tex] es:
[tex]\[ D^{-1} = \begin{pmatrix} -212 & 40 & -13 & 4 \\ -101 & 19 & -6 & 2 \\ 49 & -9 & 3 & -1 \\ -38 & 7 & -2 & 1 \end{pmatrix} \][/tex]
En resumen, las inversas de las matrices [tex]\( A \)[/tex], [tex]\( B \)[/tex], [tex]\( C \)[/tex] y [tex]\( D \)[/tex] existen y han sido calculadas como se muestra.
Analicemos cada una de las cuatro matrices [tex]\( A \)[/tex], [tex]\( B \)[/tex], [tex]\( C \)[/tex] y [tex]\( D \)[/tex], y sus inversas si existen:
### Matriz [tex]\( A \)[/tex]:
La matriz [tex]\( A \)[/tex] es:
[tex]\[ A = \begin{pmatrix} 3 & -2 & 0 & 1 \\ 0 & 4 & 5 & 1 \\ -1 & 1 & 2 & 3 \\ -1 & 2 & 3 & 6 \end{pmatrix} \][/tex]
La inversa de [tex]\( A \)[/tex] es:
[tex]\[ A^{-1} = \begin{pmatrix} 0.17741935 & 0.11290323 & -0.83870968 & 0.37096774 \\ -0.22580645 & 0.12903226 & -1.38709677 & 0.70967742 \\ 0.17741935 & 0.11290323 & 1.16129032 & -0.62903226 \\ 0.01612903 & -0.08064516 & -0.25806452 & 0.30645161 \end{pmatrix} \][/tex]
### Matriz [tex]\( B \)[/tex]:
La matriz [tex]\( B \)[/tex] es:
[tex]\[ B = \begin{pmatrix} 1 & -1 & 4 & 2 \\ 2 & 0 & 3 & 1 \\ 4 & -2 & 1 & 0 \\ -2 & 4 & -1 & 2 \end{pmatrix} \][/tex]
La inversa de [tex]\( B \)[/tex] es:
[tex]\[ B^{-1} = \begin{pmatrix} -0.16666667 & 0.16666667 & 0.25 & 0.08333333 \\ -0.36666667 & 0.56666667 & -0.15 & 0.08333333 \\ -0.06666667 & 0.46666667 & -0.3 & -0.16666667 \\ 0.53333333 & -0.73333333 & 0.4 & 0.33333333 \end{pmatrix} \][/tex]
### Matriz [tex]\( C \)[/tex]:
La matriz [tex]\( C \)[/tex] es:
[tex]\[ C = \begin{pmatrix} 3 & 1 & 5 & 7 \\ 2 & 1 & 3 & 4 \\ 4 & 1 & 6 & 8 \\ 4 & 1 & 7 & 9 \end{pmatrix} \][/tex]
La inversa de [tex]\( C \)[/tex] es:
[tex]\[ C^{-1} = \begin{pmatrix} -1 & 0 & 2 & -1 \\ 0 & 2 & -1 & 0 \\ -2 & 1 & -1 & 2 \\ 2 & -1 & 0 & -1 \end{pmatrix} \][/tex]
### Matriz [tex]\( D \)[/tex]:
La matriz [tex]\( D \)[/tex] es:
[tex]\[ D = \begin{pmatrix} 1 & -2 & 1 & 1 \\ 3 & -5 & 5 & 3 \\ -5 & 12 & 0 & -4 \\ 7 & -17 & 3 & 10 \end{pmatrix} \][/tex]
La inversa de [tex]\( D \)[/tex] es:
[tex]\[ D^{-1} = \begin{pmatrix} -212 & 40 & -13 & 4 \\ -101 & 19 & -6 & 2 \\ 49 & -9 & 3 & -1 \\ -38 & 7 & -2 & 1 \end{pmatrix} \][/tex]
En resumen, las inversas de las matrices [tex]\( A \)[/tex], [tex]\( B \)[/tex], [tex]\( C \)[/tex] y [tex]\( D \)[/tex] existen y han sido calculadas como se muestra.