The table shows the traveling time to work of 50 people.

[tex]\[
\begin{tabular}{|c|c|}
\hline
\begin{tabular}{c}
Traveling time $(t)$ \\
in minutes
\end{tabular} & Frequency \\
\hline $0\ \textless \ t \leqslant 10$ & 5 \\
\hline $10\ \textless \ t \leqslant 20$ & 15 \\
\hline $20\ \textless \ t \leqslant 30$ & 13 \\
\hline $30\ \textless \ t \leqslant 40$ & 10 \\
\hline $40\ \textless \ t \leqslant 50$ & 7 \\
\hline
\end{tabular}
\][/tex]

Calculate an estimate of the mean traveling time.

Answer: ______ mins



Answer :

To estimate the mean travel time, we will use the midpoint method. Here is a step-by-step solution:

1. Identify the travel time intervals and their corresponding frequencies:

| Travelling Time [tex]\((t)\)[/tex] (in minutes) | Frequency |
| ------------------------------------- | --------- |
| [tex]\(0 < t \leq 10\)[/tex] | 5 |
| [tex]\(10 < t \leq 20\)[/tex] | 15 |
| [tex]\(20 < t \leq 30\)[/tex] | 13 |
| [tex]\(30 < t \leq 40\)[/tex] | 10 |
| [tex]\(40 < t \leq 50\)[/tex] | 7 |

2. Calculate the midpoint for each interval:

The midpoint of an interval [tex]\((a, b)\)[/tex] is [tex]\(\frac{a + b}{2}\)[/tex].

[tex]\[ \text{Midpoints} = \left[\frac{0 + 10}{2}, \frac{10 + 20}{2}, \frac{20 + 30}{2}, \frac{30 + 40}{2}, \frac{40 + 50}{2}\right] \][/tex]

[tex]\[ \text{Midpoints} = [5, 15, 25, 35, 45] \][/tex]

3. Multiply each midpoint by its corresponding frequency:

[tex]\[ 5 \times 5 = 25 \][/tex]

[tex]\[ 15 \times 15 = 225 \][/tex]

[tex]\[ 25 \times 13 = 325 \][/tex]

[tex]\[ 35 \times 10 = 350 \][/tex]

[tex]\[ 45 \times 7 = 315 \][/tex]

4. Calculate the total sum of these products:

[tex]\[ \text{Total Midpoint Frequency} = 25 + 225 + 325 + 350 + 315 = 1240 \][/tex]

5. Calculate the total frequency:

[tex]\[ \text{Total Frequency} = 5 + 15 + 13 + 10 + 7 = 50 \][/tex]

6. Calculate the estimated mean travel time:

The estimated mean travel time is calculated by dividing the total sum of the midpoint frequencies by the total frequency:

[tex]\[ \text{Estimated Mean} = \frac{\text{Total Midpoint Frequency}}{\text{Total Frequency}} = \frac{1240}{50} = 24.8 \, \text{minutes} \][/tex]

Therefore, the estimated mean travelling time is [tex]\(24.8\)[/tex] minutes.