Give the values of [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] needed to write the equation in standard form.

[tex]\[
(5+x)(5-x)=7
\][/tex]

A. [tex]\( a = -1 \)[/tex]; [tex]\( b = 0 \)[/tex]; [tex]\( c = 25 \)[/tex]
B. [tex]\( a = 1 \)[/tex]; [tex]\( b = 0 \)[/tex]; [tex]\( c = -18 \)[/tex]
C. [tex]\( a = 25 \)[/tex]; [tex]\( b = 0 \)[/tex]; [tex]\( c = -1 \)[/tex]



Answer :

Certainly! Let's work through the steps to rewrite the given equation [tex]\((5 + x)(5 - x) = 7\)[/tex] in its standard form [tex]\(Ax^2 + Bx + C = 0\)[/tex], and then identify the coefficients [tex]\(A\)[/tex], [tex]\(B\)[/tex], and [tex]\(C\)[/tex].

1. First, expand the left-hand side of the equation:

[tex]\[ (5 + x)(5 - x) \][/tex]

Recall the difference of squares formula [tex]\( (a + b)(a - b) = a^2 - b^2 \)[/tex]:

[tex]\[ (5 + x)(5 - x) = 5^2 - x^2 = 25 - x^2 \][/tex]

2. Replace the expanded form back into the equation:

[tex]\[ 25 - x^2 = 7 \][/tex]

3. Move all terms to one side to obtain [tex]\(0\)[/tex] on the other side:

[tex]\[ 25 - x^2 - 7 = 0 \][/tex]

Simplify the expression:

[tex]\[ 18 - x^2 = 0 \][/tex]

4. Rearrange it to match the standard quadratic form [tex]\(Ax^2 + Bx + C = 0\)[/tex]:

[tex]\[ -x^2 + 18 = 0 \][/tex]

This can be written as:

[tex]\[ -x^2 + 0x + 18 = 0 \][/tex]

5. Identify the coefficients [tex]\(A\)[/tex], [tex]\(B\)[/tex], and [tex]\(C\)[/tex]:

Comparing this with the standard form [tex]\(Ax^2 + Bx + C = 0\)[/tex]:

[tex]\[ A = -1 \][/tex]
[tex]\[ B = 0 \][/tex]
[tex]\[ C = 18 \][/tex]

Therefore, the correct values required to write the equation in standard form are [tex]\(A = -1\)[/tex], [tex]\(B = 0\)[/tex], and [tex]\(C = 18\)[/tex].