Calculate the area of a rectangle that is [tex]$3 \frac{5}{6} \text{ cm}$[/tex] long and [tex]$1 \frac{3}{5} \text{ cm}$[/tex] wide.

Enter your answer (opens in a new window).

Note: If your answer is less than one, leave the box for the whole number blank.



Answer :

To find the area of a rectangle with the given dimensions, we can follow these steps:

1. Convert the mixed numbers to improper fractions:
- The length of the rectangle is given as [tex]\(3 \frac{5}{6} \text{ cm}\)[/tex].
- First, convert [tex]\(3 \frac{5}{6}\)[/tex] to an improper fraction:
[tex]\[ 3 \frac{5}{6} = 3 + \frac{5}{6} = \frac{18}{6} + \frac{5}{6} = \frac{23}{6} \][/tex]
- The width of the rectangle is given as [tex]\(1 \frac{3}{5} \text{ cm}\)[/tex].
- Next, convert [tex]\(1 \frac{3}{5}\)[/tex] to an improper fraction:
[tex]\[ 1 \frac{3}{5} = 1 + \frac{3}{5} = \frac{5}{5} + \frac{3}{5} = \frac{8}{5} \][/tex]

2. Convert the improper fractions to decimals for easier multiplication:
- The length in decimal form:
[tex]\[ \frac{23}{6} \approx 3.8333 \][/tex]
- The width in decimal form:
[tex]\[ \frac{8}{5} = 1.6 \][/tex]

3. Multiply the length and width to find the area:
- Use the approximate decimal values:
[tex]\[ \text{Area} = 3.8333 \times 1.6 \approx 6.1333 \text{ square centimeters} \][/tex]

Therefore, the dimensions of the rectangle and the calculated area are:
- Length: approximately [tex]\(3.8333 \text{ cm}\)[/tex]
- Width: exactly [tex]\(1.6 \text{ cm}\)[/tex]
- Area: approximately [tex]\(6.1333 \text{ square centimeters}\)[/tex]

So, the area of the rectangle is [tex]\( \boxed{6.1333} \text{ square centimeters}\)[/tex].