Write the expression as a sum and/or difference of logarithms. Express powers as factors.

[tex]\log_6 \left(\frac{x^{11}}{x-4}\right), \; x \ \textgreater \ 4[/tex]

[tex]\log_6 \left(\frac{x^{11}}{x-4}\right) = \boxed{\text{(Simplify your answer.)}}[/tex]



Answer :

To transform the expression [tex]\(\log_6\left(\frac{x^{11}}{x-4}\right)\)[/tex] into a sum and/or difference of logarithms, and to express powers as factors, we will use logarithmic properties.

Specifically, we'll use the following properties of logarithms:
1. [tex]\( \log_b \left(\frac{A}{B}\right) = \log_b(A) - \log_b(B) \)[/tex]
2. [tex]\( \log_b(A^C) = C \cdot \log_b(A) \)[/tex]

Let's apply these properties step-by-step:

### Step 1: Break Down the Logarithm of the Fraction
We begin with:
[tex]\[ \log_6\left(\frac{x^{11}}{x-4}\right) \][/tex]

Using the first property ([tex]\( \log_b \left(\frac{A}{B}\right) = \log_b(A) - \log_b(B) \)[/tex]), we can rewrite this as:
[tex]\[ \log_6(x^{11}) - \log_6(x-4) \][/tex]

### Step 2: Simplify the Logarithm of the Power
Next, we'll simplify [tex]\(\log_6(x^{11})\)[/tex] using the property [tex]\( \log_b(A^C) = C \cdot \log_b(A) \)[/tex]:
[tex]\[ \log_6(x^{11}) = 11 \cdot \log_6(x) \][/tex]

### Step 3: Combine the Results
Now we combine the simplified terms:
[tex]\[ 11 \cdot \log_6(x) - \log_6(x-4) \][/tex]

Thus, the expression [tex]\(\log_6\left(\frac{x^{11}}{x-4}\right)\)[/tex] can be written as:
[tex]\[ 11 \cdot \log_6(x) - \log_6(x-4) \][/tex]

So, the final answer is:
[tex]\[ \boxed{11 \cdot \log_6(x) - \log_6(x-4)} \][/tex]