What is the approximate value of [tex]$q$[/tex] in the equation below?

[tex]q + \log_2 6 = 2q + 2[/tex]

A. [tex]-1.613[/tex]

B. [tex]-1.522[/tex]

C. [tex]0.585[/tex]

D. [tex]3.079[/tex]



Answer :

To find the approximate value of [tex]\( q \)[/tex] in the equation [tex]\( q + \log_2 6 = 2q + 2 \)[/tex], let’s go through the steps of solving the equation.

1. Start with the given equation:

[tex]\[ q + \log_2 6 = 2q + 2 \][/tex]

2. Isolate [tex]\( q \)[/tex]:

Subtract [tex]\( q \)[/tex] from both sides of the equation:

[tex]\[ \log_2 6 = q + 2 \][/tex]

3. Isolate [tex]\( q \)[/tex] further:

Subtract 2 from both sides:

[tex]\[ \log_2 6 - 2 = q \][/tex]

4. Simplify the expression:

We need to calculate [tex]\( \log_2 6 - 2 \)[/tex].

The change of base formula for logarithms can be used here:

[tex]\[ \log_2 6 = \frac{\log 6}{\log 2} \][/tex]

Thus,

[tex]\[ q = \frac{\log 6}{\log 2} - 2 \][/tex]

5. Express the logarithm in base 2 using simpler forms:

We can rewrite [tex]\( \log 6 \)[/tex] as [tex]\( \log (2 \cdot 3) = \log 2 + \log 3 \)[/tex].

Therefore:

[tex]\[ \frac{\log 6}{\log 2} = \frac{\log 2 + \log 3}{\log 2} = 1 + \frac{\log 3}{\log 2} \][/tex]

So,

[tex]\[ q = 1 + \frac{\log 3}{\log 2} - 2 = -1 + \frac{\log 3}{\log 2} \][/tex]

6. Identify the approximate numerical value:

The result reduces to:

[tex]\[ q = -1 + \frac{\log 3}{\log 2} \][/tex]

The approximate value of [tex]\(\frac{\log 3}{\log 2}\)[/tex] is about 1.585 (as [tex]\( \log_2 3 \approx 1.585 \)[/tex]).

Substituting this back:

[tex]\[ q \approx -1 + 1.585 = 0.585 \][/tex]

7. Match the calculated value with the given options:

Among the provided options:
- [tex]\( -1.613 \)[/tex]
- [tex]\( -1.522 \)[/tex]
- [tex]\( 0.585 \)[/tex]
- [tex]\( 3.079 \)[/tex]

The value [tex]\( q \approx 0.585 \)[/tex] matches with our calculated result. Thus, the approximate value of [tex]\( q \)[/tex] is:

[tex]\[ \boxed{0.585} \][/tex]