Solve for [tex]x[/tex]:

[tex]\[ -8x \leq 2 \][/tex]

A. [tex]x \leq 0.25[/tex]
B. [tex]x \geq -0.25[/tex]
C. [tex]x \geq -0.30[/tex]
D. [tex]x \leq -0.25[/tex]



Answer :

Alright, let's solve the inequality [tex]\(-8x \leq 2\)[/tex].

1. Initial Inequality:
Start with the inequality:
[tex]\[ -8x \leq 2 \][/tex]

2. Isolate x:
To isolate [tex]\(x\)[/tex], we need to divide both sides by [tex]\(-8\)[/tex]. However, remember that when you divide or multiply both sides of an inequality by a negative number, the direction of the inequality sign must be reversed.
[tex]\[ x \geq \frac{2}{-8} \][/tex]

3. Simplify the Fraction:
Simplify the fraction on the right side:
[tex]\[ x \geq \frac{2}{-8} = \frac{-1}{4} = -0.25 \][/tex]

So, the solution to the inequality [tex]\(-8x \leq 2\)[/tex] is:
[tex]\[ x \geq -0.25 \][/tex]

4. Choose the correct option:
Among the given options:
[tex]\[ \text{A. } x \leq 0.25 \\ \text{B. } x \geq -0.25 \\ \text{C. } x \geq -0.30 \\ \text{D. } x \leq -0.25 \][/tex]

The correct answer is:
[tex]\[ \boxed{\text{B. } x \geq -0.25} \][/tex]