Part A

Prove that when [tex]\( x \ \textgreater \ 1 \)[/tex], a triangle with side lengths [tex]\( a = x^2 - 1 \)[/tex], [tex]\( b = 2x \)[/tex], and [tex]\( c = x^2 + 1 \)[/tex] is a right triangle.

1. Use the Pythagorean theorem:
[tex]\[ a^2 + b^2 = c^2 \][/tex]

2. Substitute the given side lengths into the equation:
[tex]\[ (x^2 - 1)^2 + (2x)^2 = (x^2 + 1)^2 \][/tex]

3. Simplify both sides of the equation:
[tex]\[ (x^2 - 1)^2 = x^4 - 2x^2 + 1 \][/tex]
[tex]\[ (2x)^2 = 4x^2 \][/tex]
[tex]\[ (x^2 + 1)^2 = x^4 + 2x^2 + 1 \][/tex]

4. Combine and simplify:
[tex]\[ x^4 - 2x^2 + 1 + 4x^2 = x^4 + 2x^2 + 1 \][/tex]
[tex]\[ x^4 + 2x^2 + 1 = x^4 + 2x^2 + 1 \][/tex]

5. Conclude that the equation holds true:
[tex]\[ x^4 + 2x^2 + 1 = x^4 + 2x^2 + 1 \][/tex]

Since the equation is valid, the triangle with side lengths [tex]\( a = x^2 - 1 \)[/tex], [tex]\( b = 2x \)[/tex], and [tex]\( c = x^2 + 1 \)[/tex] is a right triangle when [tex]\( x \ \textgreater \ 1 \)[/tex].

Explain your steps:
- Substituted the side lengths into the Pythagorean theorem.
- Simplified and combined terms.
- Verified that both sides of the equation are equal.



Answer :

Let's solve Part A by proving that the triangle with side lengths [tex]\(a = x^2 - 1\)[/tex], [tex]\(b = 2x\)[/tex], and [tex]\(c = x^2 + 1\)[/tex] is a right triangle when [tex]\(x > 1\)[/tex]. We will use the Pythagorean theorem for this purpose.

The Pythagorean theorem states that for a right triangle with side lengths [tex]\(a\)[/tex], [tex]\(b\)[/tex], and hypotenuse [tex]\(c\)[/tex], the following equation holds:
[tex]\[a^2 + b^2 = c^2.\][/tex]

Using the given side lengths, let's create and simplify this equation step-by-step.

Step 1: Write down the square of each side.

[tex]\[ a^2 = (x^2 - 1)^2 \][/tex]
[tex]\[ b^2 = (2x)^2 \][/tex]
[tex]\[ c^2 = (x^2 + 1)^2 \][/tex]

Step 2: Expand these expressions.

First, expand [tex]\(a^2 = (x^2 - 1)^2\)[/tex]:
[tex]\[ a^2 = (x^2 - 1)(x^2 - 1) \][/tex]
[tex]\[ a^2 = x^4 - 2x^2 + 1 \][/tex]

Next, expand [tex]\(b^2 = (2x)^2\)[/tex]:
[tex]\[ b^2 = 4x^2 \][/tex]

Finally, expand [tex]\(c^2 = (x^2 + 1)^2\)[/tex]:
[tex]\[ c^2 = (x^2 + 1)(x^2 + 1) \][/tex]
[tex]\[ c^2 = x^4 + 2x^2 + 1 \][/tex]

Step 3: Add [tex]\(a^2\)[/tex] and [tex]\(b^2\)[/tex] to see if it equals [tex]\(c^2\)[/tex].

[tex]\[ a^2 + b^2 = (x^4 - 2x^2 + 1) + 4x^2 \][/tex]
[tex]\[ a^2 + b^2 = x^4 - 2x^2 + 1 + 4x^2 \][/tex]
[tex]\[ a^2 + b^2 = x^4 + 2x^2 + 1 \][/tex]

Step 4: Compare [tex]\(a^2 + b^2\)[/tex] with [tex]\(c^2\)[/tex].

From previous steps:
[tex]\[ a^2 + b^2 = x^4 + 2x^2 + 1 \][/tex]
[tex]\[ c^2 = x^4 + 2x^2 + 1 \][/tex]

We observe that:
[tex]\[ a^2 + b^2 = c^2 \][/tex]

Since the left-hand side of the equation equals the right-hand side of the equation, the given side lengths [tex]\(a = x^2 - 1\)[/tex], [tex]\(b = 2x\)[/tex], and [tex]\(c = x^2 + 1\)[/tex] satisfy the Pythagorean theorem. Hence, the given triangle is a right triangle when [tex]\(x > 1\)[/tex].